Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros










Intervalo de año de publicación
1.
Vascul Pharmacol ; 155: 107371, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38599357

RESUMEN

An effective pulmonary hypertension (PH) treatment should combine antiproliferative and vasodilator effects. We characterized a wide-range of drugs comparing their anti-proliferative vs vasodilator effects in human and rat pulmonary artery smooth muscle cells (PASMC). Key findings: 1) Approved PH drugs (PDE5 inhibitors, sGC stimulators and PGI2 agonists) are preferential vasodilators. 2) cGMP stimulators were more effective in cells derived from hypertensive rats. 3) Nifedipine acted equally as vasodilator and antiproliferative. 4) quercetin and imatinib were potent dual vasodilator/antiproliferative drugs. 5) Tacrolimus and levosimendan lacked antiproliferative effects. 6) Forskolin, pinacidil and hydroxyfasudil were more effective as antiproliferative in human cells.

2.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37569725

RESUMEN

Recent evidence suggests that vitamin D is involved in the development of pulmonary arterial hypertension (PAH). The aim of this study was to analyze the electrophysiological and contractile properties of pulmonary arteries (PAs) in vitamin D receptor knockout mice (Vdr-/-). PAs were dissected and mounted in a wire myograph. Potassium membrane currents were recorded in freshly isolated PA smooth muscle cells (PASMCs) using the conventional whole-cell configuration of the patch-clamp technique. Potential vitamin D response elements (VDREs) in Kv7 channels coding genes were studied, and their protein expression was analyzed. Vdr-/- mice did not show a pulmonary hypertensive phenotype, as neither right ventricular hypertrophy nor endothelial dysfunction was apparent. However, resistance PA from these mice exhibited increased response to retigabine, a Kv7 activator, compared to controls and heterozygous mice. Furthermore, the current sensitive to XE991, a Kv7 inhibitor, was also higher in PASMCs from knockout mice. A possible VDRE was found in the gene coding for KCNE4, the regulatory subunit of Kv7.4. Accordingly, Vdr-/- mice showed an increased expression of KCNE4 in the lungs, with no changes in Kv7.1 and Kv7.4. These results indicate that the absence of Vdr in mice, as occurred with vitamin D deficient rats, is not sufficient to induce PAH. However, the contribution of Kv7 channel currents to the regulation of PA tone is increased in Vdr-/- mice, resembling animals and humans suffering from PAH.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Arteria Pulmonar , Animales , Humanos , Ratones , Ratas , Canales de Potasio KCNQ/metabolismo , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Arteria Pulmonar/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/farmacología , Vitamina D/metabolismo
3.
Biomed Pharmacother ; 164: 114952, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37295249

RESUMEN

KV7 channels exert a pivotal role regulating vascular tone in several vascular beds. In this context, KV7 channel agonists represent an attractive strategy for the treatment of pulmonary arterial hypertension (PAH). Therefore, in this study, we have explored the pulmonary vascular effects of the novel KV7 channel agonist URO-K10. Consequently, the vasodilator and electrophysiological effects of URO-K10 were tested in rat and human pulmonary arteries (PA) and PA smooth muscle cells (PASMC) using myography and patch-clamp techniques. Protein expression was also determined by Western blot. Morpholino-induced knockdown of KCNE4 was assessed in isolated PA. PASMC proliferation was measured by BrdU incorporation assay. In summary, our data show that URO-K10 is a more effective relaxant of PA than the classical KV7 activators retigabine and flupirtine. URO-K10 enhanced KV currents in PASMC and its electrophysiological and relaxant effects were inhibited by the KV7 channel blocker XE991. The effects of URO-K10 were confirmed in human PA. URO-K10 also exhibited antiproliferative effects in human PASMC. Unlike retigabine and flupirtine, URO-K10-induced pulmonary vasodilation was not affected by morpholino-induced knockdown of the KCNE4 regulatory subunit. Noteworthy, the pulmonary vasodilator efficacy of this compound was considerably increased under conditions mimicking the ionic remodelling (as an in vitro model of PAH) and in PA from monocrotaline-induced pulmonary hypertensive rats. Taking all together, URO-K10 behaves as a KCNE4-independent KV7 channel activator with much increased pulmonary vascular effects compared to classical KV7 channel activators. Our study identifies a promising new drug in the context of PAH.


Asunto(s)
Canales de Potasio KCNQ , Canales de Potasio con Entrada de Voltaje , Animales , Humanos , Ratas , Canales de Potasio KCNQ/genética , Morfolinos , Canales de Potasio con Entrada de Voltaje/genética , Vasodilatadores/farmacología
5.
Front Pharmacol ; 14: 1021535, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063275

RESUMEN

Background: Despite increasing evidence suggesting that pulmonary arterial hypertension (PAH) is a complex disease involving vasoconstriction, thrombosis, inflammation, metabolic dysregulation and vascular proliferation, all the drugs approved for PAH mainly act as vasodilating agents. Since excessive TGF-ß signaling is believed to be a critical factor in pulmonary vascular remodeling, we hypothesized that blocking TGFß-activated kinase 1 (TAK-1), alone or in combination with a vasodilator therapy (i.e., riociguat) could achieve a greater therapeutic benefit. Methods: PAH was induced in male Wistar rats by a single injection of the VEGF receptor antagonist SU5416 (20 mg/kg) followed by exposure to hypoxia (10%O2) for 21 days. Two weeks after SU5416 administration, vehicle, riociguat (3 mg/kg/day), the TAK-1 inhibitor 5Z-7-oxozeaenol (OXO, 3 mg/kg/day), or both drugs combined were administered for 7 days. Metabolic profiling of right ventricle (RV), lung tissues and PA smooth muscle cells (PASMCs) extracts were performed by magnetic resonance spectroscopy, and the differences between groups analyzed by multivariate statistical methods. Results: In vitro, riociguat induced potent vasodilator effects in isolated pulmonary arteries (PA) with negligible antiproliferative effects and metabolic changes in PASMCs. In contrast, 5Z-7-oxozeaenol effectively inhibited the proliferation of PASMCs characterized by a broad metabolic reprogramming but had no acute vasodilator effects. In vivo, treatment with riociguat partially reduced the increase in pulmonary arterial pressure (PAP), RV hypertrophy (RVH), and pulmonary vascular remodeling, attenuated the dysregulation of inosine, glucose, creatine and phosphocholine (PC) in RV and fully abolished the increase in lung IL-1ß expression. By contrast, 5Z-7-oxozeaenol significantly reduced pulmonary vascular remodeling and attenuated the metabolic shifts of glucose and PC in RV but had no effects on PAP or RVH. Importantly, combined therapy had an additive effect on pulmonary vascular remodeling and induced a significant metabolic effect over taurine, amino acids, glycolysis, and TCA cycle metabolism via glycine-serine-threonine metabolism. However, it did not improve the effects induced by riociguat alone on pulmonary pressure or RV remodeling. None of the treatments attenuated pulmonary endothelial dysfunction and hyperresponsiveness to serotonin in isolated PA. Conclusion: Our results suggest that inhibition of TAK-1 induces antiproliferative effects and its addition to short-term vasodilator therapy enhances the beneficial effects on pulmonary vascular remodeling and RV metabolic reprogramming in experimental PAH.

6.
Am J Respir Cell Mol Biol ; 69(2): 147-158, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36917789

RESUMEN

Reduced expression and/or activity of Kv1.5 channels (encoded by KCNA5) is a common hallmark in human or experimental pulmonary arterial hypertension (PAH). Likewise, genetic variants in KCNA5 have been found in patients with PAH, but their functional consequences and potential impact on the disease are largely unknown. Herein, this study aimed to characterize the functional consequences of seven KCNA5 variants found in a cohort of patients with PAH. Potassium currents were recorded by patch-clamp technique in HEK293 cells transfected with wild-type or mutant Kv1.5 cDNA. Flow cytometry, Western blot, and confocal microscopy techniques were used for measuring protein expression and cell apoptosis in HEK293 and human pulmonary artery smooth muscle cells. KCNA5 variants (namely, Arg184Pro and Gly384Arg) found in patients with PAH resulted in a clear loss of potassium channel function as assessed by electrophysiological and molecular modeling analyses. The Arg184Pro variant also resulted in a pronounced reduction of Kv1.5 expression. Transfection with Arg184Pro or Gly384Arg variants decreased apoptosis of human pulmonary artery smooth muscle cells compared with the wild-type cells, demonstrating that KCNA5 dysfunction in both variants affects cell viability. Thus, in addition to affecting channel activity, both variants were associated with impaired apoptosis, a crucial process linked to the disease. The estimated prevalence of dysfunctional KCNA5 variants in the PAH population analyzed was around 1%. The data indicate that some KCNA5 variants found in patients with PAH have critical consequences for channel function, supporting the idea that KCNA5 pathogenic variants may be a causative or contributing factor for PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Hipertensión Arterial Pulmonar/metabolismo , Células HEK293 , Hipertensión Pulmonar/metabolismo , Canal de Potasio Kv1.5/genética , Canal de Potasio Kv1.5/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Arteria Pulmonar/patología
7.
Pharmacol Res ; 189: 106684, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36740150

RESUMEN

KV1.5 channels are key players in the regulation of vascular tone and atrial excitability and their impairment is associated with cardiovascular diseases including pulmonary arterial hypertension (PAH) and atrial fibrillation (AF). Unfortunately, pharmacological strategies to improve KV1.5 channel function are missing. Herein, we aimed to study whether the chaperone sigma-1 receptor (S1R) is able to regulate these channels and represent a new strategy to enhance their function. By using different electrophysiological and molecular techniques in X. laevis oocytes and HEK293 cells, we demonstrate that S1R physically interacts with KV1.5 channels and regulate their expression and function. S1R induced a bimodal regulation of KV1.5 channel expression/activity, increasing it at low concentrations and decreasing it at high concentrations. Of note, S1R agonists (PRE084 and SKF10047) increased, whereas the S1R antagonist BD1047 decreased, KV1.5 expression and activity. Moreover, PRE084 markedly increased KV1.5 currents in pulmonary artery smooth muscle cells and attenuated vasoconstriction and proliferation in pulmonary arteries. We also show that both KV1.5 channels and S1R, at mRNA and protein levels, are clearly downregulated in samples from PAH and AF patients. Moreover, the expression of both genes showed a positive correlation. Finally, the ability of PRE084 to increase KV1.5 function was preserved under sustained hypoxic conditions, as an in vitro PAH model. Our study provides insight into the key role of S1R in modulating the expression and activity of KV1.5 channels and highlights the potential role of this chaperone as a novel pharmacological target for pathological conditions associated with KV1.5 channel dysfunction.


Asunto(s)
Fibrilación Atrial , Receptores sigma , Humanos , Células HEK293 , Pulmón/patología , Arteria Pulmonar , Receptores sigma/metabolismo , Receptor Sigma-1
8.
PLoS Pathog ; 19(1): e1011063, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634048

RESUMEN

The Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and its sublineages pose a new challenge to healthcare systems worldwide due to its ability to efficiently spread in immunized populations and its resistance to currently available therapies. COVID-19, although targeting primarily the respiratory system, is also now well established that later affects every organ in the body. Most importantly, despite the available therapy and vaccine-elicited protection, the long-term consequences of viral infection in breakthrough and asymptomatic individuals are areas of concern. In the past two years, investigators accumulated evidence on how the virus triggers our immune system and the molecular signals involved in the cross-talk between immune cells and structural cells in the pulmonary vasculature to drive pathological lung complications such as endothelial dysfunction and thrombosis. In the review, we emphasize recent updates on the pathophysiological inflammatory and immune responses associated with SARS-CoV-2 infection and their potential long-term consequences that may consequently lead to the development of pulmonary vascular diseases.


Asunto(s)
COVID-19 , Coinfección , Humanos , SARS-CoV-2 , Pulmón , Reacciones Cruzadas
10.
Cells ; 11(15)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35954255

RESUMEN

HIV and Schistosoma infections have been individually associated with pulmonary vascular disease. Co-infection with these pathogens is very common in tropical areas, with an estimate of six million people co-infected worldwide. However, the effects of HIV and Schistosoma co-exposure on the pulmonary vasculature and its impact on the development of pulmonary vascular disease are largely unknown. Here, we have approached these questions by using a non-infectious animal model based on lung embolization of Schistosoma mansoni eggs in HIV-1 transgenic (HIV) mice. Schistosome-exposed HIV mice but not wild-type (Wt) counterparts showed augmented pulmonary arterial pressure associated with markedly suppressed endothelial-dependent vasodilation, increased endothelial remodeling and vessel obliterations, formation of plexiform-like lesions and a higher degree of perivascular fibrosis. In contrast, medial wall muscularization was similarly increased in both types of mice. Moreover, HIV mice displayed an impaired immune response to parasite eggs in the lung, as suggested by decreased pulmonary leukocyte infiltration, small-sized granulomas, and augmented residual egg burden. Notably, vascular changes in co-exposed mice were associated with increased expression of proinflammatory and profibrotic cytokines, including IFN-γ and IL-17A in CD4+ and γδ T cells and IL-13 in myeloid cells. Collectively, our study shows for the first time that combined pulmonary persistence of HIV proteins and Schistosoma eggs, as it may occur in co-infected people, alters the cytokine landscape and targets the vascular endothelium for aggravated pulmonary vascular pathology. Furthermore, it provides an experimental model for the understanding of pulmonary vascular disease associated with HIV and Schistosoma co-morbidity.


Asunto(s)
Infecciones por VIH , Esquistosomiasis mansoni , Enfermedades Vasculares , Animales , Citocinas/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/patología , Humanos , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Schistosoma mansoni , Esquistosomiasis mansoni/complicaciones , Esquistosomiasis mansoni/patología , Enfermedades Vasculares/patología
11.
Sci Rep ; 11(1): 15829, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349187

RESUMEN

The dysregulation of K+ channels is a hallmark of pulmonary arterial hypertension (PAH). Herein, the channelome was analyzed in lungs of patients with PAH in a public transcriptomic database. Sixty six (46%) mRNA encoding cationic channels were dysregulated in PAH with most of them downregulated (83%). The principal component analysis indicated that dysregulated cationic channel expression is a signature of the disease. Changes were very similar in idiopathic, connective tissue disease and congenital heart disease associated PAH. This analysis 1) is in agreement with the widely recognized pathophysiological role of TASK1 and KV1.5, 2) supports previous preliminary reports pointing to the dysregulation of several K+ channels including the downregulation of KV1.1, KV1.4, KV1.6, KV7.1, KV7.4, KV9.3 and TWIK2 and the upregulation of KCa1.1 and 3) points to other cationic channels dysregulated such as Kv7.3, TALK2, CaV1 and TRPV4 which might play a pathophysiological role in PAH. The significance of other changes found in Na+ and TRP channels remains to be investigated.


Asunto(s)
Cationes/metabolismo , Regulación de la Expresión Génica , Canales Iónicos/genética , Hipertensión Arterial Pulmonar/genética , Transcriptoma , Perfilación de la Expresión Génica , Humanos , Canal de Potasio Kv1.5/genética , Hipertensión Arterial Pulmonar/patología
12.
Biomolecules ; 11(6)2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073580

RESUMEN

Background: Vitamin D (vitD) deficiency is highly prevalent in patients with pulmonary arterial hypertension (PAH). Moreover, PAH-patients with lower levels of vitD have worse prognosis. We hypothesize that recovering optimal levels of vitD in an animal model of PAH previously depleted of vitD improves the hemodynamics, the endothelial dysfunction and the ionic remodeling. Methods: Male Wistar rats were fed a vitD-free diet for five weeks and then received a single dose of Su5416 (20 mg/Kg) and were exposed to vitD-free diet and chronic hypoxia (10% O2) for three weeks to induce PAH. Following this, vitD deficient rats with PAH were housed in room air and randomly divided into two groups: (a) continued on vitD-free diet or (b) received an oral dose of 100,000 IU/Kg of vitD plus standard diet for three weeks. Hemodynamics, pulmonary vascular remodeling, pulmonary arterial contractility, and K+ currents were analyzed. Results: Recovering optimal levels of vitD improved endothelial function, measured by an increase in the endothelium-dependent vasodilator response to acetylcholine. It also increased the activity of TASK-1 potassium channels. However, vitD supplementation did not reduce pulmonary pressure and did not ameliorate pulmonary vascular remodeling and right ventricle hypertrophy. Conclusions: Altogether, these data suggest that in animals with PAH and severe deficit of vitD, restoring vitD levels to an optimal range partially improves some pathophysiological features of PAH.


Asunto(s)
Endotelio Vascular/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Hipertensión Arterial Pulmonar , Deficiencia de Vitamina D , Vitamina D , Animales , Endotelio Vascular/patología , Masculino , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Ratas , Ratas Wistar , Vitamina D/farmacocinética , Vitamina D/farmacología , Deficiencia de Vitamina D/tratamiento farmacológico , Deficiencia de Vitamina D/metabolismo , Deficiencia de Vitamina D/patología
13.
Pharmacol Ther ; 225: 107835, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33744261

RESUMEN

The large K+ channel functional diversity in the pulmonary vasculature results from the multitude of genes expressed encoding K+ channels, alternative RNA splicing, the post-transcriptional modifications, the presence of homomeric or heteromeric assemblies of the pore-forming α-subunits and the existence of accessory ß-subunits modulating the functional properties of the channel. K+ channels can also be regulated at multiple levels by different factors controlling channel activity, trafficking, recycling and degradation. The activity of these channels is the primary determinant of membrane potential (Em) in pulmonary artery smooth muscle cells (PASMC), providing an essential regulatory mechanism to dilate or contract pulmonary arteries (PA). K+ channels are also expressed in pulmonary artery endothelial cells (PAEC) where they control resting Em, Ca2+ entry and the production of different vasoactive factors. The activity of K+ channels is also important in regulating the population and phenotype of PASMC in the pulmonary vasculature, since they are involved in cell apoptosis, survival and proliferation. Notably, K+ channels play a major role in the development of pulmonary hypertension (PH). Impaired K+ channel activity in PH results from: 1) loss of function mutations, 2) downregulation of its expression, which involves transcription factors and microRNAs, or 3) decreased channel current as a result of increased vasoactive factors (e.g., hypoxia, 5-HT, endothelin-1 or thromboxane), exposure to drugs with channel-blocking properties, or by a reduction in factors that positively regulate K+ channel activity (e.g., NO and prostacyclin). Restoring K+ channel expression, its intracellular trafficking and the channel activity is an attractive therapeutic strategy in PH.


Asunto(s)
Hipertensión Pulmonar , Canales de Potasio , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/fisiopatología , Canales de Potasio/efectos de los fármacos , Canales de Potasio/fisiología
14.
Br J Pharmacol ; 178(8): 1836-1854, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33556997

RESUMEN

BACKGROUND AND PURPOSE: KV 1.3 channels are expressed in vascular smooth muscle cells (VSMCs), where they contribute to proliferation rather than contraction and participate in vascular remodelling. KV 1.3 channels are also expressed in macrophages, where they assemble with KV 1.5 channels (KV 1.3/KV 1.5), whose activation generates a KV current. In macrophages, the KV 1.3/KV 1.5 ratio is increased by classical activation (M1). Whether these channels are involved in angiotensin II (AngII)-induced vascular remodelling, and whether they can modulate the macrophage phenotype in hypertension, remains unknown. We characterized the role of KV 1.3 channels in vascular damage in hypertension. EXPERIMENTAL APPROACH: We used AngII-infused mice treated with two selective KV 1.3 channel inhibitors (HsTX[R14A] and [EWSS]ShK). Vascular function and structure were measured using wire and pressure myography, respectively. VSMC and macrophage electrophysiology were studied using the patch-clamp technique; gene expression was analysed using RT-PCR. KEY RESULTS: AngII increased KV 1.3 channel expression in mice aorta and peritoneal macrophages which was abolished by HsTX[R14A] treatment. KV 1.3 inhibition did not prevent hypertension, vascular remodelling, or stiffness but corrected AngII-induced macrophage infiltration and endothelial dysfunction in the small mesenteric arteries and/or aorta, via a mechanism independent of electrophysiological changes in VSMCs. AngII modified the electrophysiological properties of peritoneal macrophages, indicating an M1-like activated state, with enhanced expression of proinflammatory cytokines that induced endothelial dysfunction. These effects were prevented by KV 1.3 blockade. CONCLUSIONS AND IMPLICATIONS: We unravelled a new role for KV 1.3 channels in the macrophage-dependent endothelial dysfunction induced by AngII in mice which might be due to modulation of macrophage phenotype.


Asunto(s)
Angiotensina II , Hipertensión , Angiotensina II/toxicidad , Animales , Hipertensión/inducido químicamente , Macrófagos , Ratones , Miocitos del Músculo Liso , Remodelación Vascular
15.
Antioxidants (Basel) ; 10(2)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494520

RESUMEN

Current approved therapies for pulmonary hypertension (PH) aim to restore the balance between endothelial mediators in the pulmonary circulation. These drugs may exert vasodilator effects on poorly oxygenated vessels. This may lead to the derivation of blood perfusion towards low ventilated alveoli, i.e., producing ventilation-perfusion mismatch, with detrimental effects on gas exchange. The aim of this study is to analyze the oxygen-sensitivity in vitro of 25 drugs currently used or potentially useful for PH. Additionally, the study analyses the effectiveness of these vasodilators in the pulmonary vs the systemic vessels. Vasodilator responses were recorded in pulmonary arteries (PA) and mesenteric arteries (MA) from rats and in human PA in a wire myograph under different oxygen concentrations. None of the studied drugs showed oxygen selectivity, being equally or more effective as vasodilators under conditions of low oxygen as compared to high oxygen levels. The drugs studied showed low pulmonary selectivity, being equally or more effective as vasodilators in systemic than in PA. A similar behavior was observed for the members within each drug family. In conclusion, none of the drugs showed optimal vasodilator profile, which may limit their therapeutic efficacy in PH.

16.
Am J Respir Crit Care Med ; 203(10): 1290-1305, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33306938

RESUMEN

Rationale: Cigarette smoke is considered the chief leading cause of chronic obstructive pulmonary disease (COPD). Its impact on the progressive deterioration of airways has been extensively studied, but its direct effects on the pulmonary vasculature are less known. Objectives: To prove that pulmonary arterial remodeling in patients with COPD is not just a consequence of alveolar hypoxia but also due to the direct effects of cigarette smoke on the pulmonary vascular bed. Methods: We have used different molecular and cell biology approaches, as well as traction force microscopy, wire myography, and patch-clamp techniques in human cells and freshly isolated pulmonary arteries. In addition, we relied on in vivo models and human samples to analyze the effects of cigarette smoke on pulmonary vascular tone alterations. Measurements and Main Results: Cigarette smoke extract exposure directly promoted a hypertrophic, senescent phenotype that in turn contributed, through the secretion of inflammatory molecules, to an increase in the proliferative potential of nonexposed cells. Interestingly, these effects were significantly reversed by antioxidants. Furthermore, cigarette smoke extract affected cell contractility and dysregulated the expression and activity of the voltage-gated K+ channel Kv7.4. This contributed to the impairment of vasoconstriction and vasodilation responses. Most importantly, the levels of this channel were diminished in the lungs of smoke-exposed mice, smokers, and patients with COPD. Conclusions: Cigarette smoke directly contributes to pulmonary arterial remodeling through increased cell senescence, as well as vascular tone alterations because of diminished levels and function in the Kv7.4 channel. Strategies targeting these pathways may lead to novel therapies for COPD.


Asunto(s)
Canales de Potasio KCNQ/metabolismo , Arteria Pulmonar/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Fumar/efectos adversos , Remodelación Vascular/fisiología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Arteria Pulmonar/patología , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Humo/efectos adversos , Nicotiana , Vasoconstricción , Vasodilatación
17.
Hypertension ; 76(4): 1134-1146, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32829658

RESUMEN

K+ channels play a fundamental role regulating membrane potential of pulmonary artery (PA) smooth muscle cells and their impairment is a common feature in pulmonary arterial hypertension (PAH). K+ voltage-gated channel subfamily Q (KCNQ1-5) or Kv7 channels and their regulatory subunits subfamily E (KCNE) regulatory subunits are known to regulate vascular tone, but whether Kv7 channel function is impaired in PAH and how this can affect the rationale for targeting Kv7 channels in PAH remains unknown. Here, we have studied the role of Kv7/KCNE subunits in rat PA and their possible alteration in PAH. Using the patch-clamp technique, we found that the total K+ current is reduced in PA smooth muscle cells from pulmonary hypertension animals (SU5416 plus hypoxia) and Kv7 currents made a higher contribution to the net K+ current. Likewise, enhanced vascular responses to Kv7 channel modulators were found in pulmonary hypertension rats. Accordingly, KCNE4 subunit was highly upregulated in lungs from pulmonary hypertension animals and patients. Additionally, Kv7 channel activity was enhanced in the presence of Kv1.5 and TASK-1 channel inhibitors and this was associated with an increased KCNE4 membrane abundance. Compared with systemic arteries, PA showed a poor response to Kv7 channel modulators which was associated with reduced expression and membrane abundance of Kv7.4 and KCNE4. Our data indicate that Kv7 channel function is preserved and KCNE4 is upregulated in PAH. Therefore, compared with other downregulated channels, the contribution of Kv7 channels is increased in PAH resulting in an enhanced sensitivity to Kv7 channel modulators. This study provides insight into the potential usefulness of targeting Kv7 channels in PAH.


Asunto(s)
Canal de Potasio KCNQ1/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar/metabolismo , Animales , Proliferación Celular/fisiología , Humanos , Hipoxia/metabolismo , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Arteria Pulmonar/efectos de los fármacos , Ratas
18.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L627-L640, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32726132

RESUMEN

Vitamin D (VitD) receptor regulates the expression of several genes involved in signaling pathways affected in pulmonary hypertension (PH). VitD deficiency is highly prevalent in PH, and low levels are associated with poor prognosis. We investigated if VitD deficiency may predispose to or exacerbate PH. Male Wistar rats were fed with a standard or a VitD-free diet for 5 wk. Next, rats were further divided into controls or PH, which was induced by a single dose of Su-5416 (20 mg/kg) and exposure to hypoxia (10% O2) for 2 wk. VitD deficiency had no effect on pulmonary pressure in normoxic rats, indicating that, by itself, it does not trigger PH. However, it induced several moderate but significant changes characteristic of PH in the pulmonary arteries, such as increased muscularization, endothelial dysfunction, increased survivin, and reduced bone morphogenetic protein (Bmp) 4, Bmp6, DNA damage-inducible transcript 4, and K+ two-pore domain channel subfamily K member 3 (Kcnk3) expression. Myocytes isolated from pulmonary arteries from VitD-deficient rats had a reduced whole voltage-dependent potassium current density and acid-sensitive (TASK-like) potassium currents. In rats with PH induced by Su-5416 plus hypoxia, VitD-free diet induced a modest increase in pulmonary pressure, worsened endothelial function, increased the hyperreactivity to serotonin, arterial muscularization, decreased total and TASK-1 potassium currents, and further depolarized the pulmonary artery smooth muscle cell membrane. In human pulmonary artery smooth muscle cells from controls and patients with PH, the active form of VitD calcitriol significantly increased KCNK3 mRNA expression. Altogether, these data strongly suggest that the deficit in VitD induces pulmonary vascular dysfunction.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Deficiencia de Vitamina D/metabolismo , Animales , Humanos , Pulmón/metabolismo , Pulmón/fisiopatología , Masculino , Potenciales de la Membrana/fisiología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/metabolismo , Ratas Wistar , Vitamina D/metabolismo
19.
Nature ; 586(7828): 287-291, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32728214

RESUMEN

All metazoans depend on the consumption of O2 by the mitochondrial oxidative phosphorylation system (OXPHOS) to produce energy. In addition, the OXPHOS uses O2 to produce reactive oxygen species that can drive cell adaptations1-4, a phenomenon that occurs in hypoxia4-8 and whose precise mechanism remains unknown. Ca2+ is the best known ion that acts as a second messenger9, yet the role ascribed to Na+ is to serve as a mere mediator of membrane potential10. Here we show that Na+ acts as a second messenger that regulates OXPHOS function and the production of reactive oxygen species by modulating the fluidity of the inner mitochondrial membrane. A conformational shift in mitochondrial complex I during acute hypoxia11 drives acidification of the matrix and the release of free Ca2+ from calcium phosphate (CaP) precipitates. The concomitant activation of the mitochondrial Na+/Ca2+ exchanger promotes the import of Na+ into the matrix. Na+ interacts with phospholipids, reducing inner mitochondrial membrane fluidity and the mobility of free ubiquinone between complex II and complex III, but not inside supercomplexes. As a consequence, superoxide is produced at complex III. The inhibition of Na+ import through the Na+/Ca2+ exchanger is sufficient to block this pathway, preventing adaptation to hypoxia. These results reveal that Na+ controls OXPHOS function and redox signalling through an unexpected interaction with phospholipids, with profound consequences for cellular metabolism.


Asunto(s)
Transporte de Electrón , Hipoxia/metabolismo , Mitocondrias/metabolismo , Sistemas de Mensajero Secundario , Sodio/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Fosfatos de Calcio/metabolismo , Línea Celular Tumoral , Precipitación Química , Humanos , Masculino , Fluidez de la Membrana , Ratones Endogámicos C57BL , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Intercambiador de Sodio-Calcio/metabolismo
20.
Front Physiol ; 11: 634, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32676036

RESUMEN

Lung diseases constitute a global health concern causing disability. According to WHO in 2016, respiratory diseases accounted for 24% of world population mortality, the second cause of death after cardiovascular diseases. The Kv7 channels family is a group of voltage-dependent K+ channels (Kv) encoded by KCNQ genes that are involved in various physiological functions in numerous cell types, especially, cardiac myocytes, smooth muscle cells, neurons, and epithelial cells. Kv7 channel α-subunits are regulated by KCNE1-5 ancillary ß-subunits, which modulate several characteristics of Kv7 channels such as biophysical properties, cell-location, channel trafficking, and pharmacological sensitivity. Kv7 channels are mainly expressed in two large groups of lung tissues: pulmonary arteries (PAs) and bronchial tubes. In PA, Kv7 channels are expressed in pulmonary artery smooth muscle cells (PASMCs); while in the airway (trachea, bronchus, and bronchioles), Kv7 channels are expressed in airway smooth muscle cells (ASMCs), airway epithelial cells (AEPs), and vagal airway C-fibers (VACFs). The functional role of Kv7 channels may vary depending on the cell type. Several studies have demonstrated that the impairment of Kv7 channel has a strong impact on pulmonary physiology contributing to the pathophysiology of different respiratory diseases such as cystic fibrosis, asthma, chronic obstructive pulmonary disease, chronic coughing, lung cancer, and pulmonary hypertension. Kv7 channels are now recognized as playing relevant physiological roles in many tissues, which have encouraged the search for Kv7 channel modulators with potential therapeutic use in many diseases including those affecting the lung. Modulation of Kv7 channels has been proposed to provide beneficial effects in a number of lung conditions. Therefore, Kv7 channel openers/enhancers or drugs acting partly through these channels have been proposed as bronchodilators, expectorants, antitussives, chemotherapeutics and pulmonary vasodilators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...