Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 806, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145101

RESUMEN

Continued fossil fuel development puts existing assets at risk of exceeding the capacity compatible with limiting global warming below 2 °C. However, it has been argued that plant conversions and new abatement technologies may allow for a smoother transition. We quantify the impact of future technology availability on the need for fossil fuel power plants to be stranded, i.e. decommissioned or underused. Even with carbon capture and storage (CCS) and bioenergy widely deployed in the future, a total of 267 PWh electricity generation (ten times global electricity production in 2018) may still be stranded. Coal-to-gas conversions could prevent 10-30 PWh of stranded generation. CCS retrofits, combined with biomass co-firing, could prevent 33-68 PWh. In contrast, lack of deployment of CCS or bioenergy could increase stranding by 69 or 45 percent respectively. Stranding risks remain under optimistic technology assumptions and even more so if CCS and bioenergy are not deployed at scale.

2.
Environ Health Perspect ; 128(11): 115001, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33170741

RESUMEN

BACKGROUND: Modeling suggests that climate change mitigation actions can have substantial human health benefits that accrue quickly and locally. Documenting the benefits can help drive more ambitious and health-protective climate change mitigation actions; however, documenting the adverse health effects can help to avoid them. Estimating the health effects of mitigation (HEM) actions can help policy makers prioritize investments based not only on mitigation potential but also on expected health benefits. To date, however, the wide range of incompatible approaches taken to developing and reporting HEM estimates has limited their comparability and usefulness to policymakers. OBJECTIVE: The objective of this effort was to generate guidance for modeling studies on scoping, estimating, and reporting population health effects from climate change mitigation actions. METHODS: An expert panel of HEM researchers was recruited to participate in developing guidance for conducting HEM studies. The primary literature and a synthesis of HEM studies were provided to the panel. Panel members then participated in a modified Delphi exercise to identify areas of consensus regarding HEM estimation. Finally, the panel met to review and discuss consensus findings, resolve remaining differences, and generate guidance regarding conducting HEM studies. RESULTS: The panel generated a checklist of recommendations regarding stakeholder engagement: HEM modeling, including model structure, scope and scale, demographics, time horizons, counterfactuals, health response functions, and metrics; parameterization and reporting; approaches to uncertainty and sensitivity analysis; accounting for policy uptake; and discounting. DISCUSSION: This checklist provides guidance for conducting and reporting HEM estimates to make them more comparable and useful for policymakers. Harmonization of HEM estimates has the potential to lead to advances in and improved synthesis of policy-relevant research that can inform evidence-based decision making and practice. https://doi.org/10.1289/EHP6745.


Asunto(s)
Contaminación del Aire , COVID-19 , Coronavirus , Síndrome Respiratorio Agudo Grave , Cambio Climático , Brotes de Enfermedades , Estudios Epidemiológicos , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...