Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Chem Sci ; 14(36): 9630-9650, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736620

RESUMEN

Nanomaterials, and especially nanoparticles, have been introduced to almost any aspect of our lives. This has caused increasing concern as to their toxicity and adverse effects on the environment and human health. The activity of nanoparticles, including their nanotoxicity, is not only a function of the material they are made of but also their size, shape, and surface properties. It is evident that there is an unmet need for simple approaches to the speciation of nanoparticles, namely to monitor and detect them based on their properties. An appealing method for such speciation involves the imprinting of nanoparticles in soft matrices. The principles of imprinting nanoparticles originate from the molecularly imprinted polymer (MIP) approach. This review summarizes the current status of this emerging field, which bridges between the traditional MIP approach and the imprinting of larger entities such as viruses and bacteria. The concepts of nanoparticle imprinting and the requirement of both physical and chemical matching between the nanoparticles and the matrix are discussed and demonstrated.

2.
Vaccines (Basel) ; 11(4)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37112711

RESUMEN

Two doses of mRNA SARS-CoV-2 vaccines elicit an attenuated humoral immune response among immunocompromised patients. Our study aimed to assess the immunogenicity of a third dose of the BNT162b2 vaccine among lung transplant recipients (LTRs). We prospectively evaluated the humoral response by measuring anti-spike SARS-CoV-2 and neutralizing antibodies in 139 vaccinated LTRs ~4-6 weeks following the third vaccine dose. The t-cell response was evaluated by IFNγ assay. The primary outcome was the seropositivity rate following the third vaccine dose. Secondary outcomes included: positive neutralizing antibody and cellular immune response rate, adverse events, and COVID-19 infections. Results were compared to a control group of 41 healthcare workers. Among LTRs, 42.4% had a seropositive antibody titer, and 17.2% had a positive t-cell response. Seropositivity was associated with younger age (t = 3.736, p < 0.001), higher GFR (t = 2.355, p = 0.011), and longer duration from transplantation (t = -1.992, p = 0.024). Antibody titer positively correlated with neutralizing antibodies (r = 0.955, p < 0.001). The current study may suggest the enhancement of immunogenicity by using booster doses. Since monoclonal antibodies have limited effectiveness against prevalent sub-variants and LTRs are prone to severe COVID-19 morbidity, vaccination remains crucial for this vulnerable population.

3.
Sci Adv ; 9(10): eadg1036, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36888708

RESUMEN

Messenger RNA (mRNA) lipid nanoparticle (LNP) vaccines have emerged as an effective vaccination strategy. Although currently applied toward viral pathogens, data concerning the platform's effectiveness against bacterial pathogens are limited. Here, we developed an effective mRNA-LNP vaccine against a lethal bacterial pathogen by optimizing mRNA payload guanine and cytosine content and antigen design. We designed a nucleoside-modified mRNA-LNP vaccine based on the bacterial F1 capsule antigen, a major protective component of Yersinia pestis, the etiological agent of plague. Plague is a rapidly deteriorating contagious disease that has killed millions of people during the history of humankind. Now, the disease is treated effectively with antibiotics; however, in the case of a multiple-antibiotic-resistant strain outbreak, alternative countermeasures are required. Our mRNA-LNP vaccine elicited humoral and cellular immunological responses in C57BL/6 mice and conferred rapid, full protection against lethal Y. pestis infection after a single dose. These data open avenues for urgently needed effective antibacterial vaccines.


Asunto(s)
Vacuna contra la Peste , Peste , Yersinia pestis , Ratones , Animales , Peste/prevención & control , Vacuna contra la Peste/genética , Proteínas Bacterianas/genética , Ratones Endogámicos C57BL , Yersinia pestis/genética , Antígenos Bacterianos/genética
4.
Eur J Haematol ; 110(1): 99-108, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36208015

RESUMEN

We assessed the humoral and cellular response to the fourth BNT162b2 mRNA COVID-19 vaccine dose in patients with CLL. A total of 67 patients with CLL and 85 age matched controls tested for serologic response and pseudo-neutralization assay. We also tested the functional T-cell response by interferon gamma (IFNγ) to spike protein in 26 patients. Two weeks after the fourth vaccine antibody serologic response was evident in 37 (55.2%) patients with CLL, 20 /22 (91%) of treatment naïve, and 9/32 (28%) patients with ongoing therapy, compared with 100% serologic response in age matched controls. The antibody titer increased by 10-fold in patients with CLL, however, still 88-folds lower than age matched controls. Predictors of better chances of post fourth vaccination serologic response were previous positive serologies after second, third, and pre-fourth vaccination, neutralizing assay, and treatment naïve patients. T-cell response improved from 42.3% before the fourth vaccine to 84.6% 2 weeks afterwards. During the time period of 3 months after the fourth vaccination, 14 patients (21%) developed COVID-19 infection, all recovered uneventfully. Our data demonstrate that fourth SARS-CoV-2 vaccination improves serologic response in patients with CLL to a lesser extent than healthy controls and induces functional T-cell response.


Asunto(s)
COVID-19 , Leucemia Linfocítica Crónica de Células B , Humanos , Vacunas contra la COVID-19 , ARN Mensajero , Vacuna BNT162 , Leucemia Linfocítica Crónica de Células B/terapia , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos Antivirales
5.
Vaccines (Basel) ; 10(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36298458

RESUMEN

The design of efficient vaccines for long-term protective immunity against pathogens represents an objective of utmost public health priority. In general, live attenuated vaccines are considered to be more effective than inactivated pathogens, yet potentially more reactogenic. Accordingly, inactivation protocols which do not compromise the pathogen's ability to elicit protective immunity are highly beneficial. One of the sentinel mechanisms of the host innate immune system relies on the production of reactive nitrogen intermediates (RNI), which efficiently inactivate pathogens. Peroxynitrite (PN) is a prevalent RNI, assembled spontaneously upon the interaction of nitric oxide (NO) with superoxide. PN exerts its bactericidal effect by via the efficient oxidation of a broad range of biological molecules. Furthermore, the interaction of PN with proteins results in structural/chemical modifications, such as the oxidation of tryptophan, tyrosine, and cysteine residues, as well as the formation of carbonyl, dityrosine, and nitrotyrosine (NT). In addition to their role in innate immunity, these PN-mediated modifications of pathogen components may also augment the antigenicity of pathogen peptides and proteins, hence contributing to specific humoral responses. In the study reported here, a novel approach for vaccine development, consisting of pathogen inactivation by PN, combined with increased immunity of NT-containing peptides, is implemented as a proof-of-concept for vaccination against the intracellular pathogen Francisella tularensis (F. tularensis). In vivo experiments in a murine model of tularemia confirm that PN-inactivated F. tularensis formulations may rapidly stimulate innate and adaptive immune cells, conferring efficient protection against a lethal challenge, superior to that elicited by bacteria inactivated by the widely used formalin treatment.

6.
J Clin Med ; 11(9)2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35566774

RESUMEN

Both humoral and cellular anamnestic responses are significant for protective immunity against SARS-CoV-2. In the current study, the responses in elderly people before and after a fourth vaccine dose of BNT162b2 were compared to those of individuals immunized with three vaccine doses. Although a boost effect was observed, the high response following the third administration questions the necessity of an early fourth boost.

7.
Transpl Int ; 35: 10204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529596

RESUMEN

Immune response to two SARS-CoV-2 mRNA vaccine doses among kidney transplant recipients (KTRs) is limited. We aimed to evaluate humoral and cellular response to a third BNT162b2 dose. In this prospective study, 190 KTRs were evaluated before and ∼3 weeks after the third vaccine dose. The primary outcomes were anti-spike antibody level >4160 AU/ml (neutralization-associated cutoff) and any seropositivity. Univariate and multivariate analyses were conducted to identify variables associated with antibody response. T-cell response was evaluated in a subset of participants. Results were compared to a control group of 56 healthcare workers. Among KTRs, we found a seropositivity rate of 70% (133/190) after the third dose (37%, 70/190, after the second vaccine dose); and 27% (52/190) achieved levels above 4160 AU/ml after the third dose, compared to 93% of controls. Variables associated with antibody response included higher antibody levels after the second dose (odds ratio [OR] 30.8 per log AU/ml, 95% confidence interval [CI]11-86.4, p < 0.001); and discontinuation of antimetabolite prior to vaccination (OR 9.1,95% CI 1.8-46.5, p = 0.008). T-cell response was demonstrated in 13% (7/53). In conclusion, third dose BNT162b2 improved immune response among KTRs, however 30% still remained seronegative. Pre-vaccination temporary immunosuppression reduction improved antibody response.


Asunto(s)
COVID-19 , Trasplante de Riñón , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunidad , Estudios Prospectivos , SARS-CoV-2 , Receptores de Trasplantes , Vacunas Sintéticas , Vacunas de ARNm
8.
Vaccines (Basel) ; 10(4)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35455362

RESUMEN

Longevity of the immune response following viral exposure is an essential aspect of SARS-CoV-2 infection. Mild SARS-CoV-2 infection of K18-hACE2 mice was implemented for evaluating the mounting and longevity of a specific memory immune response. We show that the infection of K18-hACE2 mice induced robust humoral and cellular immunity (systemic and local), which persisted for at least six months. Virus-specific T cells and neutralizing antibody titers decreased over time, yet their levels were sufficient to provide sterile immunity against lethal rechallenge six months post-primary infection. The study substantiates the role of naturally induced immunity against SARS-CoV-2 infection for preventing recurring morbidity.

9.
Viruses ; 14(2)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35215940

RESUMEN

The progression of the COVID-19 pandemic has led to the emergence of variants of concern (VOC), which may compromise the efficacy of the currently administered vaccines. Antigenic drift can potentially bring about reduced protective T cell immunity and, consequently, more severe disease manifestations. To assess this possibility, the T cell responses to the wild-type Wuhan-1 SARS-CoV-2 ancestral spike protein and the Omicron B.1.1.529 spike protein were compared. Accordingly, peripheral blood mononuclear cells (PBMC) were collected from eight healthy volunteers 4-5 months following a third vaccination with BNT162b2, and stimulated with overlapping peptide libraries representing the spike of either the ancestral or the Omicron SARS-CoV-2 virus variants. Quantification of the specific T cells was carried out by a fluorescent ELISPOT assay, monitoring cells secreting interferon-gamma (IFNg), interleukin-10 (IL-10) and interleukin-4 (IL-4). For all the examined individuals, comparable levels of reactivity to both forms of spike protein were determined. In addition, a dominant Th1 response was observed, manifested mainly by IFNg-secreting cells and only limited numbers of IL-10- and IL-4-secreting cells. The data demonstrate stable T cell activity in response to the emerging Omicron variant in the tested individuals; therefore, the protective immunity to the variant following BNT162b2 vaccination is not significantly affected.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/inmunología , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacuna BNT162/administración & dosificación , COVID-19/inmunología , COVID-19/prevención & control , Citocinas/análisis , Citocinas/inmunología , Ensayo de Immunospot Ligado a Enzimas , Femenino , Humanos , Interferón gamma/análisis , Interferón gamma/inmunología , Masculino , Persona de Mediana Edad , Glicoproteína de la Espiga del Coronavirus/inmunología , Células TH1/inmunología , Adulto Joven
10.
Arch Toxicol ; 96(3): 859-875, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032184

RESUMEN

rVSV-ΔG-SARS-CoV-2-S is a clinical stage (Phase 2) replication competent recombinant vaccine against SARS-CoV-2. To evaluate the safety profile of the vaccine, a series of non-clinical safety, immunogenicity and efficacy studies were conducted in four animal species, using multiple doses (up to 108 Plaque Forming Units/animal) and dosing regimens. There were no treatment-related mortalities or any noticeable clinical signs in any of the studies. Compared to unvaccinated controls, hematology and biochemistry parameters were unremarkable and no adverse histopathological findings. There was no detectable viral shedding in urine, nor viral RNA detected in whole blood or serum samples seven days post vaccination. The rVSV-ΔG-SARS-CoV-2-S vaccination gave rise to neutralizing antibodies, cellular immune responses, and increased lymphocytic cellularity in the spleen germinal centers and regional lymph nodes. No evidence for neurovirulence was found in C57BL/6 immune competent mice or in highly sensitive type I interferon knock-out mice. Vaccine virus replication and distribution in K18-human Angiotensin-converting enzyme 2-transgenic mice showed a gradual clearance from the vaccination site with no vaccine virus recovered from the lungs. The nonclinical data suggest that the rVSV-ΔG-SARS-CoV-2-S vaccine is safe and immunogenic. These results supported the initiation of clinical trials, currently in Phase 2.


Asunto(s)
Vacunas contra la COVID-19/toxicidad , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , Cricetinae , Femenino , Glicoproteínas de Membrana/genética , Mesocricetus , Ratones , Ratones Endogámicos C57BL , Conejos , Porcinos , Vacunación , Vacunas Sintéticas/toxicidad , Proteínas del Envoltorio Viral/genética
11.
J Interpers Violence ; 37(1-2): NP76-NP103, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32326819

RESUMEN

The relationships between exposure to potentially traumatic events (PTEs), as well as posttraumatic stress symptoms (PTSS) and somatic syndromes, have recently been exemplified. Exposure to PTEs can also set in motion complex psychological processes such as pain catastrophizing that is associated with PTSS and somatic syndromes. However, the specific moderating role of pain catastrophizing in these links remains relatively unexamined. The present study aims to assess a moderated mediation model in which catastrophizing will moderate the indirect effect of exposure to PTEs on the number of somatic symptoms and chronic pain severity via PTSS, among individuals with somatic syndromes. A volunteers' sample of 175 Israeli adults with varied somatic symptoms responded to online validated self-report questionnaires in a cross-sectional designed study. Participants' self-reported PTSS rates (57.1%) were high. PTSS and pain catastrophizing, but not exposure to PTEs, were related to chronic pain severity. Interestingly, a moderated mediation analysis indicated that the indirect effect of catastrophizing in the relation between exposure to PTEs and the number of somatic symptoms via PTSS existed only among those with high levels of catastrophizing. The present study highlights the assumption that functional somatic syndromes (FSS) have much in common. Our findings support a moderated mediation model that begins with exposure to PTEs that leads to PTSS, which in turn increase the number of somatic symptoms. Higher levels of pain catastrophizing might attenuate this indirect link by affecting the interpretation of PTSS and create a vulnerability to more somatic symptoms. Thus, changes in cognitive-sensory processing in the form of catastrophic thinking can affect psychobiological processes and heighten sensitivity to stimuli arising in the body and should be considered as possible target for future research and psychological interventions.


Asunto(s)
Dolor Crónico , Síntomas sin Explicación Médica , Trastornos por Estrés Postraumático , Adulto , Catastrofización , Estudios Transversales , Humanos , Trastornos por Estrés Postraumático/epidemiología
12.
Pathogens ; 10(8)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34451403

RESUMEN

HLA transgenic mice are instrumental for evaluation of human-specific immune responses to viral infection. Mice do not develop COVID-19 upon infection with SARS-CoV-2 due to the strict tropism of the virus to the human ACE2 receptor. The aim of the current study was the implementation of an adenovirus-mediated infection protocol for human ACE2 expression in HLA transgenic mice. Transient pulmonary expression of the human ACE2 receptor in these mice results in their sensitisation to SARS-CoV-2 infection, consequently providing a valuable animal model for COVID-19. Infection results in a transient loss in body weight starting 3 days post-infection, reaching 20-30% loss of weight at day 7 and full recovery at days 11-13 post-infection. The evolution of the disease revealed high reproducibility and very low variability among individual mice. The method was implemented in two different strains of HLA immunized mice. Infected animals developed strong protective humoral and cellular immune responses specific to the viral spike-protein, strictly depending on the adenovirus-mediated human ACE2 expression. Convalescent animals were protected against a subsequent re-infection with SARS-CoV-2, demonstrating that the model may be applied for assessment of efficacy of anti-viral immune responses.

13.
Microorganisms ; 9(5)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068310

RESUMEN

Rapid determination of bacterial antibiotic susceptibility is important for proper treatment of infections. The European Committee on Antimicrobial Susceptibility Testing (EUCAST) has recently published guidelines for rapid antimicrobial susceptibility testing (RAST) performed directly from positive blood culture vials. These guidelines, however, were only published for a limited number of common pathogenic bacteria. In this study, we evaluated the applicability of these guidelines to three Tier 1 bioterror agents (Bacillus anthracis, Yersinia pestis and Francisella tularensis) that require prompt antibiotic treatment to mitigate morbidity and mortality. We used spiked-in human blood incubated in a BACTEC™ FX40 system to determine the proper conditions for RAST using disc-diffusion and Etest assays. We found that reliable disc-diffusion inhibition diameters and Etest MIC values could be obtained in remarkably short times. Compared to the EUCAST-recommended disc-diffusion assays that will require adjusted clinical breakpoint tables, Etest-based RAST was advantageous, as the obtained MIC values were similar to the standard MIC values, enabling the use of established category breakpoint tables. Our results demonstrate the promising applicability of the EUCAST RAST for B. anthracis-, Y. pestis- or F. tularensis-positive blood cultures, which can lead to shorter diagnostics and prompt antibiotic treatment of these dangerous pathogens.

14.
Viruses ; 13(4)2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810465

RESUMEN

Monoclonal antibodies represent an important avenue for COVID-19 therapy and are routinely used for rapid and accessible diagnosis of SARS-CoV-2 infection. The recent emergence of SARS-CoV-2 genetic variants emphasized the need to enlarge the repertoire of antibodies that target diverse epitopes, the combination of which may improve immune-diagnostics, augment the efficiency of the immunotherapy and prevent selection of escape-mutants. Antigen-specific controlled immunization of experimental animals may elicit antibody repertoires that significantly differ from those generated in the context of the immune response mounted in the course of disease. Accordingly, rabbits were immunized by several recombinant antigens representing distinct domains of the viral spike protein and monoclonal antibodies were isolated from single cells obtained by cell sorting. Characterization of a panel of successfully isolated anti-receptor binding domain (RBD) and anti-N-terminal domain (NTD) antibodies demonstrated that they exhibit high specificity and affinity profiles. Anti-RBD antibodies revealing significant neutralizing potency against SARS-CoV-2 in vitro were found to target at least three distinct epitopes. Epitope mapping established that two of these antibodies recognized a novel epitope located on the surface of the RBD. We suggest that the antibodies isolated in this study are useful for designing SARS-CoV-2 diagnosis and therapy approaches.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , COVID-19/virología , Mapeo Epitopo , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Femenino , Humanos , Pruebas de Neutralización , Conejos , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
15.
Pain Med ; 22(2): 363-371, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33164101

RESUMEN

OBJECTIVES: The contribution of psychological risk factors to the intensification of pain experienced among individuals with fibromyalgia syndrome (FMS) is relatively under-studied. The present study aims to explore associations between FMS-related somatic symptom severity and two personality tendencies: anxiety sensitivity (AS) and socially prescribed perfectionism (SPP). Furthermore, the relative contributions of these personality tendencies are examined vis-à-vis the experience of potentially traumatic events (PTEs) and the psychopathology of posttraumatic stress symptoms (PTSS). METHODS: A volunteer sample of 117 Israeli adults with FMS responded to online validated self-report questionnaires regarding their PTEs, PTSS, somatic symptom severity, FMS, AS, and SPP in a cross-sectional study. RESULTS: Participants' self-reported PTSS rates (61.5%) were high. AS and SPP were positively related to somatic symptom severity. Interestingly, we found that PTSS positively predicted the severity of somatic symptoms above and beyond the contributions of AS and SPP. CONCLUSIONS: The present study supports the assumption that psychological risk factors may affect the expression of somatic symptoms and the interpretation of pain stimulus arising in the body that might eventually be experienced as excessively painful. The study also suggests that above and beyond psychological risk factors, PTSS may express a high predominance and affect pain perception among participants with FMS.


Asunto(s)
Fibromialgia , Síntomas sin Explicación Médica , Perfeccionismo , Trastornos por Estrés Postraumático , Adulto , Ansiedad , Estudios Transversales , Fibromialgia/diagnóstico , Humanos , Trastornos por Estrés Postraumático/diagnóstico , Trastornos por Estrés Postraumático/epidemiología
16.
Microorganisms ; 8(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33265965

RESUMEN

We previously demonstrated that the HtrA (High Temperature Requirement A) protease/chaperone active in the quality control of protein synthesis, represents an important virulence determinant of Bacillus anthracis. Virulence attenuation of htrA-disrupted Bacillus anthracis strains was attributed to susceptibility of ΔhtrA strains to stress insults, as evidenced by affected growth under various stress conditions. Here, we report a comparative RNA-seq transcriptomic study generating a database of differentially expressed genes in the B. anthracishtrA-disrupted and wild type parental strains under oxidative stress. The study demonstrates that, apart from protease and chaperone activities, HtrA exerts a regulatory role influencing expression of more than 1000 genes under stress. Functional analysis of groups or individual genes exhibiting strain-specific modulation, evidenced (i) massive downregulation in the ΔhtrA and upregulation in the WT strains of various transcriptional regulators, (ii) downregulation of translation processes in the WT strain, and (iii) downregulation of metal ion binding functions and upregulation of sporulation-associated functions in the ΔhtrA strain. These modulated functions are extensively discussed. Fifteen genes uniquely upregulated in the wild type strain were further interrogated for their modulation in response to other stress regimens. Overexpression of one of these genes, encoding for MazG (a nucleoside triphosphate pyrophosphohydrolase involved in various stress responses in other bacteria), in the ΔhtrA strain resulted in partial alleviation of the H2O2-sensitive phenotype.

17.
Sci Rep ; 9(1): 11418, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31388083

RESUMEN

Francisella tularensis (Ft), the causative agent of lethal tularemia, is classified as a category A biological warfare threat agent. While Ft infection is treatable by antibiotics, many failed antibiotic treatments were reported, highlighting the need for effective new treatments. It has been demonstrated that binding of antibody-coated bacteria to the Fc receptor located on phagocytic cells is a key process needed for efficient protection against Ft. Yet, Ft utilizes the same receptor to enter the phagocytic cells in order to escape the immune system. To address the question whether an anti-Ft LPS antibody lacking the ability to bind the Fc receptor may inhibit the entry of Ft into host cells, a soluble scFv (TL1-scFv) was constructed from an anti Ft-LPS antibody (TL1) that was isolated from an immune single-chain (scFv) phage-display library. Bacterial uptake was assessed upon infection of macrophages with Ft live attenuated strain (LVS) in the presence of either TL1 or TL1-scFv. While incubation of LVS in the presence of TL1 greatly enhanced bacterial uptake, LVS uptake was significantly inhibited in the presence of TL1-scFv. These results prompt further experiments probing the therapeutic efficacy of TL1-scFv, alone or in combination with antibiotic treatment.


Asunto(s)
Anticuerpos Antibacterianos/farmacología , Francisella tularensis/inmunología , Lipopolisacáridos/inmunología , Fagocitosis/efectos de los fármacos , Anticuerpos de Cadena Única/farmacología , Tularemia/tratamiento farmacológico , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/aislamiento & purificación , Anticuerpos Antibacterianos/uso terapéutico , Vacunas Bacterianas/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/microbiología , Fagocitosis/inmunología , Conejos , Anticuerpos de Cadena Única/sangre , Anticuerpos de Cadena Única/aislamiento & purificación , Anticuerpos de Cadena Única/uso terapéutico , Tularemia/sangre , Tularemia/inmunología , Tularemia/microbiología , Vacunas Atenuadas/administración & dosificación
18.
Front Microbiol ; 10: 255, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30833938

RESUMEN

Anthrax is a lethal disease caused by the Gram-positive spore-producing bacterium Bacillus anthracis. We previously demonstrated that disruption of htrA gene, encoding the chaperone/protease HtrABA (High Temperature Requirement A of B. anthracis) results in significant virulence attenuation, despite unaffected ability of ΔhtrA strains (in which the htrA gene was deleted) to synthesize the key anthrax virulence factors: the exotoxins and capsule. B. anthracis ΔhtrA strains exhibited increased sensitivity to stress regimens as well as silencing of the secreted starvation-associated Neutral Protease A (NprA) and down-modulation of the bacterial S-layer. The virulence attenuation associated with disruption of the htrA gene was suggested to reflect the susceptibility of ΔhtrA mutated strains to stress insults encountered in the host indicating that HtrABA represents an important B. anthracis pathogenesis determinant. As all HtrA serine proteases, HtrABA exhibits a protease catalytic domain and a PDZ domain. In the present study we interrogated the relative impact of the proteolytic activity (mediated by the protease domain) and the PDZ domain (presumably necessary for the chaperone activity and/or interaction with substrates) on manifestation of phenotypic characteristics mediated by HtrABA. By inspecting the phenotype exhibited by ΔhtrA strains trans-complemented with either a wild-type, truncated (ΔPDZ), or non-proteolytic form (mutated in the catalytic serine residue) of HtrABA, as well as strains exhibiting modified chromosomal alleles, it is shown that (i) the proteolytic activity of HtrABA is essential for its N-terminal autolysis and subsequent release into the extracellular milieu, while the PDZ domain was dispensable for this process, (ii) the PDZ domain appeared to be dispensable for most of the functions related to stress resilience as well as involvement of HtrABA in assembly of the bacterial S-layer, (iii) conversely, the proteolytic activity but not the PDZ domain, appeared to be dispensable for the role of HtrABA in mediating up-regulation of the extracellular protease NprA under starvation stress, and finally (iv) in a murine model of anthrax, the HtrABA PDZ domain, was dispensable for manifestation of B. anthracis virulence. The unexpected dispensability of the PDZ domain may represent a unique characteristic of HtrABA amongst bacterial serine proteases of the HtrA family.

19.
J Clin Microbiol ; 56(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29386263

RESUMEN

Multiplexed detection technologies are becoming increasingly important given the possibility of bioterrorism attacks, for which the range of suspected pathogens can vary considerably. In this work, we describe the use of Luminex MagPlex magnetic microspheres for the construction of two multiplexed diagnostic suspension arrays, enabling antibody-based detection of bacterial pathogens and their related disease biomarkers directly from blood cultures. The first 4-plex diagnostic array enabled the detection of both anthrax and plague infections using soluble disease biomarkers, including protective antigen (PA) and anthrax capsular antigen for anthrax detection and the capsular F1 and LcrV antigens for plague detection. The limits of detection (LODs) ranged between 0.5 and 5 ng/ml for the different antigens. The second 2-plex diagnostic array facilitated the detection of Yersinia pestis (LOD of 1 × 106 CFU/ml) and Francisella tularensis (LOD of 1 × 104 CFU/ml) from blood cultures. Inoculated, propagated blood cultures were processed (15 to 20 min) via 2 possible methodologies (Vacutainer or a simple centrifugation step), allowing the direct detection of bacteria in each sample, and the entire assay could be performed in 90 min. While detection of bacteria and soluble markers from blood cultures using PCR Luminex suspension arrays has been widely described, to our knowledge, this study is the first to demonstrate the utility of the Luminex system for the immunodetection of both bacteria and soluble markers directly from blood cultures. Targeting both the bacterial pathogens as well as two different disease biomarkers for each infection, we demonstrated the benefit of the multiplexed developed assays for enhanced, reliable detection. The presented arrays could easily be expanded to include antibodies for the detection of other pathogens of interest in hospitals or labs, demonstrating the applicability of this technology for the accurate detection and confirmation of a wide range of potential select agents.


Asunto(s)
Carbunco/diagnóstico , Cultivo de Sangre/métodos , Peste/diagnóstico , Análisis por Matrices de Proteínas/métodos , Tularemia/diagnóstico , Carbunco/sangre , Carbunco/inmunología , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/sangre , Bacillus anthracis/genética , Bacillus anthracis/inmunología , Bacillus anthracis/aislamiento & purificación , Biomarcadores/sangre , Bioterrorismo , Francisella tularensis/genética , Francisella tularensis/inmunología , Francisella tularensis/aislamiento & purificación , Humanos , Imanes , Microesferas , Peste/sangre , Peste/inmunología , Reacción en Cadena de la Polimerasa , Análisis por Matrices de Proteínas/instrumentación , Sensibilidad y Especificidad , Tularemia/sangre , Tularemia/inmunología , Yersinia pestis/genética , Yersinia pestis/inmunología , Yersinia pestis/aislamiento & purificación
20.
Vaccine ; 35(50): 7001-7009, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29102170

RESUMEN

Francisella tularensis is the intracellular bacterial pathogen causing the respiratory life-threatening disease tularemia. Development of tularemia vaccines has been hampered by an incomplete understanding of the correlates of immunity. Moreover, the importance of lung cellular immunity in vaccine-mediated protection against tularemia is a controversial matter. Live attenuated vaccine strains of F. tularensis such as LVS (Live Vaccine Strain), elicit an immune response protecting mice against subsequent challenge with the virulent SchuS4 strain, yet the protective immunity against pulmonary challenge is limited in its efficacy and longevity. We established a murine intra-nasal immunization model which distinguishes between animals fully protected, challenged at 4 weeks post double-vaccination (200 inhalation Lethal Dose 50%, LD50, of SchuS4), and those which do not survive the lethal SchuS4 infection, challenged at 8 weeks post double vaccination. Early in the recall immune response in the lung (before day 3), disease progression and bacterial dissemination differed considerably between protected and non-protected immunized mice. Pre-challenge analysis, revealed that protected mice, exhibited significantly higher numbers of lung Ft-specific memory T cells compared to non-protected mice. Quantitative PCR analysis established that a higher magnitude, lung T cells response was activated in the lungs of the protected mice already at 24 h post-challenge. The data imply that an early memory response within the lung is strongly associated with protection against the lethal SchuS4 bacteria presumably by restricting the dissemination of the bacteria to internal organs. Thus, future prophylactic strategies to countermeasure F. tularensis infection may require modulation of the immune response within the lung.


Asunto(s)
Vacunas Bacterianas/inmunología , Francisella tularensis/inmunología , Memoria Inmunológica , Pulmón/inmunología , Tularemia/prevención & control , Administración Intranasal , Animales , Vacunas Bacterianas/administración & dosificación , Femenino , Esquemas de Inmunización , Ratones Endogámicos BALB C , Linfocitos T/inmunología , Tularemia/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...