Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
PLoS One ; 12(3): e0173294, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28282396

RESUMEN

The blood-stage malaria vaccine FMP2.1/AS02A, comprised of recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1) and the adjuvant system AS02A, had strain-specific efficacy against clinical malaria caused by P. falciparum with the vaccine strain 3D7 AMA1 sequence. To evaluate a potential correlate of protection, we measured the ability of participant sera to inhibit growth of 3D7 and FVO strains in vitro using high-throughput growth inhibition assay (GIA) testing. Sera from 400 children randomized to receive either malaria vaccine or a control rabies vaccine were assessed at baseline and over two annual malaria transmission seasons after immunization. Baseline GIA against vaccine strain 3D7 and FVO strain was similar in both groups, but more children in the malaria vaccine group than in the control group had 3D7 and FVO GIA activity ≥15% 30 days after the last vaccination (day 90) (49% vs. 16%, p<0.0001; and 71.8% vs. 60.4%, p = 0.02). From baseline to day 90, 3D7 GIA in the vaccine group was 7.4 times the mean increase in the control group (p<0.0001). In AMA1 vaccinees, 3D7 GIA activity subsequently returned to baseline one year after vaccination (day 364) and did not correlate with efficacy in the extended efficacy time period to day 730. In Cox proportional hazards regression models with time-varying covariates, there was a slight suggestion of an association between 3D7 GIA activity and increased risk of clinical malaria between day 90 and day 240. We conclude that vaccination with this AMA1-based malaria vaccine increased inhibition of parasite growth, but this increase was not associated with allele-specific efficacy in the first malaria season. These results provide a framework for testing functional immune correlates of protection against clinical malaria in field trials, and will help to guide similar analyses for next-generation malaria vaccines. Clinical trials registry: This clinical trial was registered on clinicaltrials.gov, registry number NCT00460525.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/crecimiento & desarrollo , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/metabolismo , Niño , Eritrocitos/parasitología , Humanos , Malaria Falciparum/parasitología , Malí , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Plasmodium falciparum/inmunología , Plasmodium falciparum/aislamiento & purificación , Modelos de Riesgos Proporcionales , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación
2.
J Infect Dis ; 214(5): 762-71, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27296848

RESUMEN

BACKGROUND: Three full doses of RTS,S/AS01 malaria vaccine provides partial protection against controlled human malaria parasite infection (CHMI) and natural exposure. Immunization regimens, including a delayed fractional third dose, were assessed for potential increased protection against malaria and immunologic responses. METHODS: In a phase 2a, controlled, open-label, study of healthy malaria-naive adults, 16 subjects vaccinated with a 0-, 1-, and 2-month full-dose regimen (012M) and 30 subjects who received a 0-, 1-, and 7-month regimen, including a fractional third dose (Fx017M), underwent CHMI 3 weeks after the last dose. Plasmablast heavy and light chain immunoglobulin messenger RNA sequencing and antibody avidity were evaluated. Protection against repeat CHMI was evaluated after 8 months. RESULTS: A total of 26 of 30 subjects in the Fx017M group (vaccine efficacy [VE], 86.7% [95% confidence interval [CI], 66.8%-94.6%]; P < .0001) and 10 of 16 in the 012M group (VE, 62.5% [95% CI, 29.4%-80.1%]; P = .0009) were protected against infection, and protection differed between schedules (P = .040, by the log rank test). The fractional dose boosting increased antibody somatic hypermutation and avidity and sustained high protection upon rechallenge. DISCUSSIONS: A delayed third fractional vaccine dose improved immunogenicity and protection against infection. Optimization of the RTS,S/AS01 immunization regimen may lead to improved approaches against malaria. CLINICAL TRIALS REGISTRATION: NCT01857869.


Asunto(s)
Esquemas de Inmunización , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Adolescente , Adulto , Anticuerpos Antiprotozoarios/biosíntesis , Anticuerpos Antiprotozoarios/inmunología , Afinidad de Anticuerpos , Femenino , Humanos , Cadenas Pesadas de Inmunoglobulina/biosíntesis , Cadenas Ligeras de Inmunoglobulina/biosíntesis , Masculino , Persona de Mediana Edad , Adulto Joven
3.
PLoS Negl Trop Dis ; 10(2): e0004423, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26919472

RESUMEN

BACKGROUND: A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001), a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP) and a truncated repeat region that contains repeat sequences from both the VK210 (type 1) and the VK247 (type 2) parasites, was developed as a vaccine candidate for global use. METHODS: We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI) of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group) were given 3 intramuscular injections of 15 µg, 30 µg, or 60 µg respectively of VMP001, all formulated in 500 µL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls. RESULTS: The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period. SIGNIFICANCE: This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for advancement to field trials.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria Vivax/prevención & control , Plasmodium vivax/inmunología , Proteínas Protozoarias/inmunología , Adolescente , Adulto , Anticuerpos Antiprotozoarios/inmunología , Femenino , Humanos , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/efectos adversos , Malaria Vivax/inmunología , Malaria Vivax/parasitología , Masculino , Persona de Mediana Edad , Proteínas Protozoarias/administración & dosificación , Proteínas Protozoarias/efectos adversos , Vacunación , Adulto Joven
4.
PLoS One ; 10(7): e0131571, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26148007

RESUMEN

METHODS: In an observer blind, phase 2 trial, 55 adults were randomized to receive one dose of Ad35.CS.01 vaccine followed by two doses of RTS,S/AS01 (ARR-group) or three doses of RTS,S/AS01 (RRR-group) at months 0, 1, 2 followed by controlled human malaria infection. RESULTS: ARR and RRR vaccine regimens were well tolerated. Efficacy of ARR and RRR groups after controlled human malaria infection was 44% (95% confidence interval 21%-60%) and 52% (25%-70%), respectively. The RRR-group had greater anti-CS specific IgG titers than did the ARR-group. There were higher numbers of CS-specific CD4 T-cells expressing > 2 cytokine/activation markers and more ex vivo IFN-γ enzyme-linked immunospots in the ARR-group than the RRR-group. Protected subjects had higher CS-specific IgG titers than non-protected subjects (geometric mean titer, 120.8 vs 51.8 EU/ml, respectively; P = .001). CONCLUSIONS: An increase in vaccine efficacy of ARR-group over RRR-group was not achieved. Future strategies to improve upon RTS,S-induced protection may need to utilize alternative highly immunogenic prime-boost regimens and/or additional target antigens. TRIAL REGISTRATION: ClinicalTrials.gov NCT01366534.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria/inmunología , Malaria/prevención & control , Esporozoítos/inmunología , Anticuerpos Antiprotozoarios/inmunología , Formación de Anticuerpos/inmunología , Linfocitos T CD4-Positivos/inmunología , Método Doble Ciego , Humanos , Inmunización Secundaria/métodos , Inmunoglobulina G/inmunología , Pruebas Inmunológicas/métodos , Interferón gamma/inmunología , Vacunación/métodos
5.
PLoS One ; 10(4): e0122835, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25856308

RESUMEN

HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN ('A'), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 ('P'), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides, adenoviral vector priming modulated the cytokine-expression profile of the protein-induced CD4+ T cells. Each regimen induced HIV-1-specific T-cell responses in systemic/local tissues in mice. This suggests that prime-boost regimens combining adjuvanted protein and low-seroprevalent chimpanzee adenoviral vectors represent an attractive vaccination strategy for clinical evaluation.


Asunto(s)
Vectores Genéticos/genética , VIH-1/inmunología , Proteínas Recombinantes de Fusión/inmunología , Linfocitos T/inmunología , Vacunas Virales/inmunología , Adenoviridae , Animales , Anticuerpos Antivirales/sangre , Citocinas/inmunología , Ensayo de Inmunoadsorción Enzimática , Genes pol/genética , Antígenos VIH/genética , Proteína p24 del Núcleo del VIH/genética , Inyecciones Intramusculares , Macaca , Ratones , Pan troglodytes , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Vacunas Virales/administración & dosificación , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética
6.
Hum Vaccin Immunother ; 10(8): 2211-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25424924

RESUMEN

This phase II, randomized, double-blind study evaluated the immunogenicity of RTS,S vaccines containing Adjuvant System AS01 or AS02 as compared with non-adjuvanted RTS,S in healthy, malaria-naïve adults (NCT00443131). Thirty-six subjects were randomized (1:1:1) to receive RTS,S/AS01, RTS,S/AS02, or RTS,S/saline at months 0, 1, and 2. Antibody responses to Plasmodium falciparum circumsporozoite (CS) and hepatitis B surface (HBs) antigens were assessed and cell-mediated immune responses evaluated by flow cytometry using intracellular cytokine staining on peripheral blood mononuclear cells. Anti-CS antibody avidity was also characterized. Safety and reactogenicity after each vaccine dose were monitored. One month after the third vaccine dose, RTS,S/AS01 (160.3 EU/mL [95%CI: 114.1-225.4]) and RTS,S/AS02 (77.4 EU/mL (95%CI: 47.3-126.7)) recipients had significantly higher anti-CS antibody geometric mean titers (GMTs) than recipients of RTS,S/saline (12.2 EU/mL (95%CI: 4.8-30.7); P < 0.0001 and P = 0.0011, respectively). The anti-CS antibody GMT was significantly higher with RTS,S/AS01 than with RTS,S/AS02 (P = 0.0135). Anti-CS antibody avidity was in the same range in all groups. CS- and HBs-specific CD4(+) T cell responses were greater for both RTS,S/AS groups than for the RTS,S/saline group. Reactogenicity was in general higher for RTS,S/AS compared with RTS,S/saline. Most grade 3 solicited adverse events (AEs) were of short duration and grade 3 solicited general AEs were infrequent in the 3 groups. No serious adverse events were reported. In conclusion, in comparison with non-adjuvanted RTS,S, both RTS,S/AS vaccines exhibited better CS-specific immune responses. The anti-CS antibody response was significantly higher with RTS,S/AS01 than with RTS,S/AS02. The adjuvanted vaccines had acceptable safety profiles.


Asunto(s)
Vacunas contra la Malaria/inmunología , Vacunas Sintéticas/inmunología , Adolescente , Adulto , Anticuerpos Antiprotozoarios/sangre , Afinidad de Anticuerpos , Citocinas/análisis , Método Doble Ciego , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Femenino , Citometría de Flujo , Voluntarios Sanos , Humanos , Leucocitos Mononucleares/inmunología , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/efectos adversos , Masculino , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Resultado del Tratamiento , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Adulto Joven
7.
Vaccine ; 32(49): 6683-91, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24950358

RESUMEN

In an attempt to improve the efficacy of the candidate malaria vaccine RTS,S/AS02, two studies were conducted in 1999 in healthy volunteers of RTS,S/AS02 in combination with recombinant Plasmodium falciparum thrombospondin-related anonymous protein (TRAP). In a Phase 1 safety and immunogenicity study, volunteers were randomized to receive TRAP/AS02 (N=10), RTS,S/AS02 (N=10), or RTS,S+TRAP/AS02 (N=20) at 0, 1 and 6-months. In a Phase 2 challenge study, subjects were randomized to receive either RTS,S+TRAP/AS02 (N=25) or TRAP/AS02 (N=10) at 0 and 1-month, or to a challenge control group (N=8). In both studies, the combination vaccine had an acceptable safety profile and was acceptably tolerated. Antigen-specific antibodies, lymphoproliferative responses, and IFN-γ production by ELISPOT assay elicited with the combination vaccine were qualitatively similar to those generated by the single component vaccines. However, post-dose 2 anti-CS antibodies in the RTS,S+TRAP/AS02 vaccine recipients were lower than in the RTS,S/AS02 vaccine recipients. After challenge, 10 of 11 RTS,S+TRAP/AS02 vaccinees, 5 of 5 TRAP/AS02 vaccinees, and 8 of 8 infectivity controls developed parasitemia, with median pre-patent periods of 13.0, 11.0, and 12.0 days, respectively. The absence of any prevention or delay of parasitemia by TRAP/AS02 suggests no apparent added value of TRAP/AS02 as a candidate vaccine. The absence of significant protection or delay of parasitemia in the 11 RTS,S+TRAP/AS02 vaccine recipients contrasts with previous 2 dose studies of RTS,S/AS02. The small sample size did not permit identifying statistically significant differences between the study arms. However, we speculate, within the constraints of the challenge study, that the presence of the TRAP antigen may have interfered with the vaccine efficacy previously observed with this regimen of RTS,S/AS02, and that any future TRAP-based vaccines should consider employing alternative vaccine platforms.


Asunto(s)
Lípido A/análogos & derivados , Vacunas contra la Malaria/efectos adversos , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Saponinas/efectos adversos , Adolescente , Adulto , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Proliferación Celular , Combinación de Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Ensayo de Immunospot Ligado a Enzimas , Femenino , Humanos , Interferón gamma/metabolismo , Leucocitos Mononucleares/inmunología , Lípido A/administración & dosificación , Lípido A/efectos adversos , Vacunas contra la Malaria/administración & dosificación , Masculino , Persona de Mediana Edad , Parasitemia/prevención & control , Proteínas Protozoarias/inmunología , Saponinas/administración & dosificación , Resultado del Tratamiento , Vacunación/efectos adversos , Vacunación/métodos , Adulto Joven
8.
AIDS ; 28(12): 1769-81, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-24911353

RESUMEN

OBJECTIVE: Tuberculosis (TB) is highly prevalent among HIV-infected people, including those receiving combination antiretroviral therapy (cART), necessitating a well tolerated and efficacious TB vaccine for these populations. We evaluated the safety and immunogenicity of the candidate TB vaccine M72/AS01 in adults with well controlled HIV infection on cART. DESIGN: A randomized, observer-blind, controlled trial (NCT00707967). METHODS: HIV-infected adults on cART in Switzerland were randomized 3 : 1 : 1 to receive two doses, 1 month apart, of M72/AS01, AS01 or 0.9% physiological saline (N = 22, N = 8 and N = 7, respectively) and were followed up to 6 months postdose 2 (D210). Individuals with CD4⁺ cell counts below 200 cells/µl were excluded. Adverse events (AEs) including HIV-specific and laboratory safety parameters were recorded. Cell-mediated (ICS) and humoral (ELISA) responses were evaluated before vaccination, 1 month after each dose (D30, D60) and D210. RESULTS: Thirty-seven individuals [interquartile range (IQR) CD4⁺ cell counts at screening: 438-872 cells/µl; undetectable HIV-1 viremia] were enrolled; 73% of individuals reported previous BCG vaccination, 97.3% tested negative for the QuantiFERON-TB assay. For M72/AS01 recipients, no vaccine-related serious AEs or cART-regimen adjustments were recorded, and there were no clinically relevant effects on laboratory safety parameters, HIV-1 viral loads or CD4⁺ cell counts. M72/AS01 was immunogenic, inducing persistent and polyfunctional M72-specific CD4⁺ T-cell responses [medians 0.70% (IQR 0.37-1.07) at D60] and 0.42% (0.24-0.61) at D210, predominantly CD40L⁺IL-2⁺TNF-α⁺, CD40L⁺IL-2⁺ and CD40L⁺IL-2⁺TNF-α⁺IFN-γ⁺]. All M72/AS01 vaccines were seropositive for anti-M72 IgG after second vaccination until study end. CONCLUSION: M72/AS01 was clinically well tolerated and immunogenic in this population, supporting further clinical evaluation in HIV-infected individuals in TB-endemic settings.


Asunto(s)
Antirretrovirales/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Lípido A/análogos & derivados , Saponinas/efectos adversos , Vacunas contra la Tuberculosis/efectos adversos , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/prevención & control , Adolescente , Adulto , Anticuerpos Antibacterianos/sangre , Terapia Antirretroviral Altamente Activa , Linfocitos T CD4-Positivos/inmunología , Combinación de Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Femenino , Infecciones por VIH/complicaciones , Humanos , Inmunoglobulina G/sangre , Lípido A/administración & dosificación , Lípido A/efectos adversos , Masculino , Persona de Mediana Edad , Placebos/administración & dosificación , Saponinas/administración & dosificación , Método Simple Ciego , Suiza , Subgrupos de Linfocitos T/inmunología , Resultado del Tratamiento , Vacunas contra la Tuberculosis/administración & dosificación , Vacunación/efectos adversos , Vacunación/métodos , Adulto Joven
9.
PLoS One ; 8(11): e79323, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24260195

RESUMEN

BACKGROUND: The FMP2.1/AS02A candidate malaria vaccine was tested in a Phase 2 study in Mali. Based on results from the first eight months of follow-up, the vaccine appeared well-tolerated and immunogenic. It had no significant efficacy based on the primary endpoint, clinical malaria, but marginal efficacy against clinical malaria in secondary analyses, and high allele-specific efficacy. Extended follow-up was conducted to evaluate extended safety, immunogenicity and efficacy. METHODS: A randomized, double-blinded trial of safety, immunogenicity and efficacy of the candidate Plasmodium falciparum apical membrane antigen 1 (AMA1) vaccine FMP2.1/AS02A was conducted in Bandiagara, Mali. Children aged 1-6 years were randomized in a 1∶1 ratio to receive FMP2.1/AS02A or control rabies vaccine on days 0, 30 and 60. Using active and passive surveillance, clinical malaria and adverse events as well as antibodies against P. falciparum AMA1 were monitored for 24 months after the first vaccination, spanning two malaria seasons. FINDINGS: 400 children were enrolled. Serious adverse events occurred in nine participants in the FMP2.1/AS02A group and three in the control group; none was considered related to study vaccination. After two years, anti-AMA1 immune responses remained significantly higher in the FMP2.1/AS02A group than in the control group. For the entire 24-month follow-up period, vaccine efficacy was 7.6% (p = 0.51) against first clinical malaria episodes and 9.9% (p = 0.19) against all malaria episodes. For the final 16-month follow-up period, vaccine efficacy was 0.9% (p = 0.98) against all malaria episodes. Allele-specific efficacy seen in the first malaria season did not extend into the second season of follow-up. INTERPRETATION: Allele-specific vaccine efficacy was not sustained in the second malaria season, despite continued high levels of anti-AMA1 antibodies. This study presents an opportunity to evaluate correlates of partial protection against clinical malaria that waned during the second malaria season. TRIAL REGISTRATION: Clinicaltrials.gov NCT00460525 NCT00460525.


Asunto(s)
Antígenos de Protozoos/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Alelos , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Malí , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Plasmodium falciparum/patogenicidad
10.
J Clin Immunol ; 33(8): 1360-75, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24142232

RESUMEN

PURPOSE: In this dose-finding Phase II study (NCT00621322), we evaluated the safety and immunogenicity of different formulations of the candidate tuberculosis vaccine containing the M72 antigen (10/20/40 µg doses) and the liposome-based AS01 Adjuvant System. We aimed to select the lowest-dose combination of M72 and AS01 that was clinically well tolerated with immunogenicity comparable to that of the previously tested M72/AS01B (40 µg) candidate vaccine. METHODS: Healthy PPD-positive (induration 3-10 mm) adults (18-45 years) in The Philippines were randomized (4:4:4:4:1:1) to receive 2 injections, 1 month apart, of M72/AS01B (40 µg), M72/AS01E (10 µg), M72/AS01E (20 µg), M72/AS02D (10 µg), M72/Saline (40 µg) or AS01B alone, and were followed up for 6 months. AS01E and AS02D contain half the quantities of the immunostimulants present in AS01B. AS02D is an oil-in-water emulsion. Vaccine selection was based on the CD4(+) T-cell responses at 1 month post vaccination. RESULTS: All formulations had a clinically acceptable safety profile with no vaccine-related serious adverse events reported. Two vaccinations of each adjuvanted M72 vaccine induced M72-specific CD4(+) T-cell and humoral responses persisting at 6 months post vaccination. No responses were observed with AS01B alone. One month post second vaccination, CD4(+) T-cell responses induced by each of the three M72/AS01 vaccine formulations were of comparable magnitudes, and all were significantly higher than those induced by M72/AS02D (10 µg) and M72/Saline. CONCLUSIONS: The formulation with the lowest antigen and adjuvant dose, M72/AS01E (10 µg), fulfilled our pre-defined selection criteria and has been selected for further clinical development.


Asunto(s)
Vacunas contra la Tuberculosis/administración & dosificación , Vacunas contra la Tuberculosis/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adolescente , Adulto , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Relación Dosis-Respuesta Inmunológica , Combinación de Medicamentos , Femenino , Humanos , Inmunidad Celular , Inmunidad Humoral , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Vacunas contra la Tuberculosis/efectos adversos , Adulto Joven
11.
Vaccine ; 31(52): 6216-24, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24144477

RESUMEN

We have designed a pre-erythrocytic vaccine candidate based on the Plasmodium vivax circumsporozoite (CSV) protein, which includes its N- and C-terminal parts and a truncated region containing repeat sequences from both the VK210 and the VK247 P. vivax subtypes. Two versions of this vaccine candidate were made: a soluble recombinant protein expressed in Escherichia coli, designated VMP001 and a particulate antigen expressed in Saccharomyces cerevisiae, designated CSV-S,S. The latter is composed of CSV-S, a fusion protein between VMP001 and hepatitis B surface antigen (HBsAg), and free HBsAg co-expressed in yeast and self-assembling into mixed particles. Both antigen versions, adjuvanted with AS01, were shown to be immunogenic in rhesus monkeys. CSV-S,S/AS01 induced higher levels of VMP001-specific antibodies than did VMP001/AS01. Antibody responses against the N- and C-terminal regions of CSV and the VK210 repeat motif were of a similar magnitude following immunization with either the soluble or the particulate antigen. However, antibodies against the AGDR region, a potentially protective B cell epitope, were only detected after immunization with CSV-S,S. Analysis of the induced CD4(+) T cells highlighted different cytokine profiles depending on the antigen form. These results warrant further clinical evaluation of these two vaccine candidates to assess the added value of a particulate versus soluble form of CSV, in terms of both immunogenicity and protective efficacy.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Vacunas contra la Malaria/inmunología , Plasmodium vivax/inmunología , Proteínas Protozoarias/inmunología , Animales , Anticuerpos Antiprotozoarios/sangre , Linfocitos T CD4-Positivos/inmunología , Citocinas/metabolismo , Escherichia coli/genética , Expresión Génica , Macaca mulatta , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/genética , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Saccharomyces cerevisiae/genética , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/inmunología
12.
Malar J ; 12: 11, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23297680

RESUMEN

BACKGROUND: The RTS,S/AS malaria candidate vaccine is being developed with the intent to be delivered, if approved, through the Expanded Programme on Immunization (EPI) of the World Health Organization. Safety, immunogenicity and efficacy of the RTS,S/AS02(D) vaccine candidate when integrated into a standard EPI schedule for infants have been reported over a nine-month surveillance period. This paper describes results following 20 months of follow up. METHODS: This Phase IIb, single-centre, randomized controlled trial enrolled 340 infants in Tanzania to receive three doses of RTS,S/AS02(D) or hepatitis B vaccine at 8, 12, and 16 weeks of age. All infants also received DTPw/Hib (diphtheria and tetanus toxoids, whole-cell pertussis vaccine, conjugated Haemophilus influenzae type b vaccine) at the same timepoints. The study was double-blinded to month 9 and single-blinded from months 9 to 20. RESULTS: From month 0 to 20, at least one SAE was reported in 57/170 infants who received RTS,S/AS02(D) (33.5%; 95% confidence interval [CI]: 26.5, 41.2) and 62/170 infants who received hepatitis B vaccine (36.5%; 95% CI: 29.2, 44.2). The SAE profile was similar in both vaccine groups; none were considered to be related to vaccination. At month 20, 18 months after completion of vaccination, 71.8% of recipients of RTS,S/AS02(D) and 3.8% of recipients of hepatitis B vaccine had seropositive titres for anti-CS antibodies; seroprotective levels of anti-HBs antibodies remained in 100% of recipients of RTS,S/AS02(D) and 97.7% recipients of hepatitis B vaccine. Anti-HBs antibody GMTs were higher in the RTS,S/AS02(D) group at all post-vaccination time points compared to control. According to protocol population, vaccine efficacy against multiple episodes of malaria disease was 50.7% (95% CI: -6.5 to 77.1, p = 0.072) and 26.7% (95% CI: -33.1 to 59.6, p = 0.307) over 12 and 18 months post vaccination, respectively. In the Intention to Treat population, over the 20-month follow up, vaccine efficacy against multiple episodes of malaria disease was 14.4% (95% CI: -41.9 to 48.4, p = 0.545). CONCLUSIONS: The acceptable safety profile and good tolerability of RTS,S/AS02(D) in combination with EPI vaccines previously reported from month 0 to 9 was confirmed over a 20 month surveillance period in this infant population. Antibodies against both CS and HBsAg in the RTS,S/AS02(D) group remained significantly higher compared to control for the study duration. Over 18 months follow up, RTS,S/AS02(D) prevented approximately a quarter of malaria cases in the study population. CLINICAL TRIALS: Gov identifier: NCT00289185.


Asunto(s)
Vacunas contra la Malaria/efectos adversos , Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Vacunación/métodos , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antivirales/sangre , Vacuna contra Difteria, Tétanos y Tos Ferina/administración & dosificación , Método Doble Ciego , Interacciones Farmacológicas , Enfermedades Endémicas , Femenino , Vacunas contra Haemophilus/administración & dosificación , Vacunas contra Hepatitis B/administración & dosificación , Humanos , Lactante , Malaria/epidemiología , Vacunas contra la Malaria/administración & dosificación , Masculino , Tanzanía/epidemiología , Vacunación/efectos adversos
13.
Malar J ; 12: 29, 2013 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-23342996

RESUMEN

BACKGROUND: The development of an asexual blood stage vaccine against Plasmodium falciparum malaria based on the major merozoite surface protein-1 (MSP1) antigen is founded on the protective efficacy observed in preclinical studies and induction of invasion and growth inhibitory antibody responses. The 42 kDa C-terminus of MSP1 has been developed as the recombinant protein vaccine antigen, and the 3D7 allotype, formulated with the Adjuvant System AS02A, has been evaluated extensively in human clinical trials. In preclinical rabbit studies, the FVO allele of MSP142 has been shown to have improved immunogenicity over the 3D7 allele, in terms of antibody titres as well as growth inhibitory activity of antibodies against both the heterologous 3D7 and homologous FVO parasites. METHODS: Two Phase 1 clinical studies were conducted to examine the safety, reactogenicity and immunogenicity of the FVO allele of MSP142 in the adjuvant system AS01 administered intramuscularly at 0-, 1-, and 2-months: one in the USA and, after evaluation of safety data results, one in Western Kenya. The US study was an open-label, dose escalation study of 10 and 50 µg doses of MSP142 in 26 adults, while the Kenya study, evaluating 30 volunteers, was a double-blind, randomized study of only the 50 µg dose with a rabies vaccine comparator. RESULTS: In these studies it was demonstrated that this vaccine formulation has an acceptable safety profile and is immunogenic in malaria-naïve and malaria-experienced populations. High titres of anti-MSP1 antibodies were induced in both study populations, although there was a limited number of volunteers whose serum demonstrated significant inhibition of blood-stage parasites as measured by growth inhibition assay. In the US volunteers, the antibodies generated exhibited better cross-reactivity to heterologous MSP1 alleles than a MSP1-based vaccine (3D7 allele) previously tested at both study sites. CONCLUSIONS: Given that the primary effector mechanism for blood stage vaccine targets is humoral, the antibody responses demonstrated to this vaccine candidate, both quantitative (total antibody titres) and qualitative (functional antibodies inhibiting parasite growth) warrant further consideration of its application in endemic settings. TRIAL REGISTRATIONS: Clinical Trials NCT00666380.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/prevención & control , Proteína 1 de Superficie de Merozoito/inmunología , Plasmodium falciparum/inmunología , Adyuvantes Inmunológicos , Adulto , Formación de Anticuerpos , Reacciones Cruzadas/inmunología , Método Doble Ciego , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inyecciones Intramusculares , Vacunas contra la Malaria/efectos adversos , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Masculino
14.
Am J Respir Crit Care Med ; 188(4): 492-502, 2013 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-23306546

RESUMEN

RATIONALE: Tuberculosis (TB) is a major cause of morbidity and mortality worldwide, thus there is an urgent need for novel TB vaccines. OBJECTIVES: We investigated a novel TB vaccine candidate, M72/AS01, in a phase IIa trial of bacille Calmette-Guérin-vaccinated, HIV-uninfected, and Mycobacterium tuberculosis (Mtb)-infected and -uninfected adults in South Africa. METHODS: Two doses of M72/AS01 were administered to healthy adults, with and without latent Mtb infection. Participants were monitored for 7 months after the first dose; cytokine production profiles, cell cycling, and regulatory phenotypes of vaccine-induced T cells were measured by flow cytometry. MEASUREMENTS AND MAIN RESULTS: The vaccine had a clinically acceptable safety profile, and induced robust, long-lived M72-specific T-cell and antibody responses. M72-specific CD4 T cells produced multiple combinations of Th1 cytokines. Analysis of T-cell Ki67 expression showed that most vaccination-induced T cells did not express Th1 cytokines or IL-17; these cytokine-negative Ki67(+) T cells included subsets of CD4 T cells with regulatory phenotypes. PD-1, a negative regulator of activated T cells, was transiently expressed on M72-specific CD4 T cells after vaccination. Specific T-cell subsets were present at significantly higher frequencies after vaccination of Mtb-infected versus -uninfected participants. CONCLUSIONS: M72/AS01 is clinically well tolerated in Mtb-infected and -uninfected adults, induces high frequencies of multifunctional T cells, and boosts distinct T-cell responses primed by natural Mtb infection. Moreover, these results provide important novel insights into how this immunity may be appropriately regulated after novel TB vaccination of Mtb-infected and -uninfected individuals.Clinical trial registered with www.clinicaltrials.gov (NCT 00600782).


Asunto(s)
Linfocitos T/inmunología , Vacunas contra la Tuberculosis/inmunología , Adulto , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Femenino , Citometría de Flujo , Humanos , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Interleucina-17/metabolismo , Masculino , Sudáfrica , Vacunas contra la Tuberculosis/administración & dosificación , Adulto Joven
15.
Clin Orthop Relat Res ; 471(3): 1000-7, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22996362

RESUMEN

BACKGROUND: Kinematically aligned TKA restores function by aligning the femoral and tibial components to the normal or prearthritic joint lines of the knee. However, aligning the components to the joint lines of the normal knee also aligns the tibial component in varus, creating concern that varus alignment might result in poor function and early catastrophic failure. QUESTIONS/PURPOSES: We therefore determined whether function and the incidence of catastrophic failure were different when the tibial component, knee, and limb alignment were in a specified normal range, varus outlier, or valgus outlier. METHODS: We prospectively followed all 198 patients (214 knees) who underwent TKAs between February and October 2008. We treated each knee in this cohort of patients with a kinematically aligned, cruciate-retaining prosthesis implanted using patient-specific guides. From a long-leg scanogram, we measured and categorized alignment of the tibial component as in range (≤ 0°) or a varus outlier (> 0°), alignment of the knee as in range (between -2.5° to -7.4° valgus) or a varus (> -2.5°) or valgus (< -7.4°) outlier, and alignment of the limb as in range (0° ± 3°) or a varus (> 3°) or valgus (< -3°) outlier. We assessed function using the Oxford Knee Score and WOMAC score, and reported catastrophic failure as the incidence of revision attributable to loosening, wear, and instability of the femoral or tibial components. The minimum followup was 31 months (mean, 38 months; range, 31-43 months). RESULTS: The mean Oxford Knee Score of 43 and WOMAC score of 92 were similar between the three alignment categories. The incidence of catastrophic failure in each alignment category was zero. CONCLUSIONS: Kinematically aligned TKA restores function without catastrophic failure regardless of the alignment category. Because 75% of patients had their tibial component categorized as a varus outlier and also had high function and a zero incidence of catastrophic failure, the concern that kinematic alignment compromises function and places the components at a high risk for catastrophic failure is unfounded and should be of interest to surgeons committed to cutting the tibia perpendicular to the mechanical axis of the tibia. LEVEL OF EVIDENCE: Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.


Asunto(s)
Artroplastia de Reemplazo de Rodilla/instrumentación , Artroplastia de Reemplazo de Rodilla/métodos , Articulación de la Rodilla/cirugía , Prótesis de la Rodilla , Falla de Prótesis , Tibia/cirugía , Adulto , Anciano , Anciano de 80 o más Años , Análisis de Varianza , Artroplastia de Reemplazo de Rodilla/efectos adversos , Fenómenos Biomecánicos , Evaluación de la Discapacidad , Femenino , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/fisiopatología , Masculino , Persona de Mediana Edad , Osteotomía , Estudios Prospectivos , Diseño de Prótesis , Radiografía , Reoperación , Tibia/diagnóstico por imagen , Tibia/fisiopatología , Factores de Tiempo , Insuficiencia del Tratamiento
16.
J Infect Dis ; 207(3): 511-9, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23204168

RESUMEN

The disappointing efficacy of blood-stage malaria vaccines may be explained in part by allele-specific immune responses that are directed against polymorphic epitopes on blood-stage antigens. FMP2.1/AS02(A), a blood-stage candidate vaccine based on apical membrane antigen 1 (AMA1) from the 3D7 strain of Plasmodium falciparum, had allele-specific efficacy against clinical malaria in a phase II trial in Malian children. We assessed the cross-protective efficacy of the malaria vaccine and inferred which polymorphic amino acid positions in AMA1 were the targets of protective allele-specific immune responses. FMP2.1/AS02(A) had the highest efficacy against AMA1 alleles that were identical to the 3D7 vaccine-type allele at 8 highly polymorphic amino acid positions in the cluster 1 loop (c1L) but differed from 3D7 elsewhere in the molecule. Comparison of the incidence of vaccine-type alleles before and after vaccination in the malaria vaccine and control groups and examination of the patterns of allele change at polymorphic positions in consecutive malaria episodes suggest that the highly polymorphic amino acid position 197 in c1L was the most critical determinant of allele-specific efficacy. These results indicate that a multivalent AMA1 vaccine with broad efficacy could include only a limited set of key alleles of this extremely polymorphic antigen.


Asunto(s)
Alelos , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Vacunas contra la Malaria , Malaria Falciparum/prevención & control , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Secuencia de Aminoácidos , Antígenos de Protozoos/química , Niño , Preescolar , Reacciones Cruzadas/inmunología , Mapeo Epitopo , Epítopos/química , Epítopos/inmunología , Haplotipos , Humanos , Lactante , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Proteínas de la Membrana/química , Modelos Moleculares , Conformación Proteica , Proteínas Protozoarias/química
17.
Tuberculosis (Edinb) ; 93(2): 179-88, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23219236

RESUMEN

UNLABELLED: Prevention of tuberculosis (TB) through vaccination would substantially reduce the global TB burden. Mtb72F/AS02 is a candidate TB vaccine shown to be immunogenic and well tolerated in PPD-negative adults. We evaluated the safety and immunogenicity of Mtb72F/AS02 in Mycobacterium-primed adults (BCG-vaccinated, or infected adults who had received post-exposure chemoprophylaxis or treatment for pulmonary TB disease). In this observer-blind controlled trial, 20 BCG-vaccinated adults and 18 adults previously infected with Mycobacterium tuberculosis (Mtb), were randomized 3:1 to receive three doses of Mtb72F/AS02 or AS02 at one-month intervals, and followed for 6 months post third vaccination. Mtb72F/AS02 was well tolerated in BCG-vaccinated adults, and tended to be more reactogenic in Mtb-infected adults. Adverse events were mainly self-limiting, resolving without sequelae. No serious adverse events were reported. The adverse events in Mtb72F/AS02 vaccinees were not clearly associated with vaccine-induced responses (as assessed by proinflammatory cytokines, total IgE and C-reactive protein levels). No Th2 T-cell responses, or vaccine-induced T-cell responses to Mtb antigens (CFP-10/PPD/ESAT-6) were detected by ICS. In both cohorts, Mtb72F/AS02 induced persistent polyfunctional Mtb72F-specific CD4(+) T-cell responses and anti-Mtb72F humoral responses. IFN-γ was detectable in serum one day post each vaccination. Further evaluation of the candidate vaccine, Mtb72F/AS02, is warranted. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT00146744.


Asunto(s)
Tuberculina/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/inmunología , Adolescente , Adulto , Anticuerpos Antibacterianos/biosíntesis , Vacuna BCG/inmunología , Linfocitos T CD4-Positivos/inmunología , Relación Dosis-Respuesta Inmunológica , Método Doble Ciego , Femenino , Humanos , Inmunidad Celular , Inmunoglobulina G/biosíntesis , Interferón gamma/biosíntesis , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/inmunología , Subgrupos de Linfocitos T/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas contra la Tuberculosis/efectos adversos , Vacunación/efectos adversos , Adulto Joven
18.
Malar J ; 11: 384, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-23173602

RESUMEN

BACKGROUND: Several pre-erythrocytic malaria vaccines based on the circumsporozoite protein (CSP) antigen of Plasmodium falciparum are in clinical development. Vaccine immunogenicity is commonly evaluated by the determination of anti-CSP antibody levels using IgG-based assays, but no standard assay is available to allow comparison of the different vaccines. METHODS: The validation of an anti-CSP repeat region enzyme-linked immunosorbent assay (ELISA) is described. This assay is based on the binding of serum antibodies to R32LR, a recombinant protein composed of the repeat region of P. falciparum CSP. In addition to the original recombinant R32LR, an easy to purify recombinant His-tagged R32LR protein has been constructed to be used as solid phase antigen in the assay. Also, hybridoma cell lines have been generated producing human anti-R32LR monoclonal antibodies to be used as a potential inexhaustible source of anti-CSP repeats standard, instead of a reference serum. RESULTS: The anti-CSP repeats ELISA was shown to be robust, specific and linear within the analytical range, and adequately fulfilled all validation criteria as defined in the ICH guidelines. Furthermore, the coefficient of variation for repeatability and intermediate precision did not exceed 23%. Non-interference was demonstrated for R32LR-binding sera, and the assay was shown to be stable over time. CONCLUSIONS: This ELISA, specific for antibodies directed against the CSP repeat region, can be used as a standard assay for the determination of humoral immunogenicity in the development of any CSP-based P. falciparum malaria vaccine.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunoglobulina G/sangre , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Adulto , Animales , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Ensayo de Inmunoadsorción Enzimática/estadística & datos numéricos , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Humanos , Límite de Detección , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
19.
J Immunol ; 188(10): 5054-62, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22504653

RESUMEN

RTS,S/AS01, a vaccine targeting pre-erythrocytic stages of Plasmodium falciparum, is undergoing clinical trials. We report an analysis of cellular immune response to component Ags of RTS,S-hepatitis B surface Ag (HBs) and P. falciparum circumsporozoite (CS) protein-among Tanzanian children in a phase IIb RTS,S/AS01(E) trial. RTS,S/AS01 (E) vaccinees make stronger T cell IFN-γ, CD69, and CD25 responses to HBs peptides than do controls, indicating that RTS,S boosts pre-existing HBs responses. T cell CD69 and CD25 responses to CS and CS-specific secreted IL-2 were augmented by RTS,S vaccination. Importantly, more than 50% of peptide-induced IFN-γ(+) lymphocytes were NK cells, and the magnitude of the NK cell CD69 response to HBs peptides correlated with secreted IL-2 concentration. CD69 and CD25 expression and IL-2 secretion may represent sensitive markers of RTS,S-induced, CS-specific T cells. The potential for T cell-derived IL-2 to augment NK cell activation in RTS,S-vaccinated individuals, and the relevance of this for protection, needs to be explored further.


Asunto(s)
Epítopos/inmunología , Interleucina-2/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Vacunas contra la Malaria/administración & dosificación , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Lactante , Kenia , Células Asesinas Naturales/parasitología , Activación de Linfocitos/inmunología , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/administración & dosificación , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/parasitología , Tanzanía
20.
PLoS One ; 6(10): e25786, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21998698

RESUMEN

BACKGROUND: RTS,S/AS01(E) is the lead candidate pre-erythrocytic malaria vaccine. In Phase IIb field trials the safety profile was acceptable and the efficacy was 53% (95%CI 31%-72%) for protecting children against clinical malaria caused by P. falciparum. We studied CS-specific T cell responses in order to identify correlates of protection. METHODS AND FINDINGS: We used intracellular cytokine staining (for IL2, IFNγ, and TNFα), ex-vivo ELISPOTs (IFNγ and IL2) and IFNγ cultured ELISPOT assays to characterize the CS-specific cellular responses in 407 children (5-17 months of age) in a phase IIb randomized controlled trial of RTS,S/AS01(E) (NCT00380393). RTS,S/ AS01(E) vaccinees had higher frequencies of CS-specific CD4+ T cells producing IFNγ, TNFα or IL2 compared to control vaccinees. In a multivariable analysis TNFα(+) CD4(+) T cells were independently associated with a reduced risk for clinical malaria among RTS,S/AS01(E) vaccinees (HR = 0.64, 95%CI 0.49-0.86, p = 0.002). There was a non-significant tendency towards reduced risk among control vaccinees (HR = 0.80, 95%CI 0.62-1.03, p = 0.084), albeit with lower CS-specific T cell frequencies and higher rates of clinical malaria. When data from both RTS,S/AS01(E) vaccinees and control vaccinees were combined (with adjusting for vaccination group), the HR was 0.74 (95%CI 0.62-0.89, p = 0.001). After a Bonferroni correction for multiple comparisons (n-18), the finding was still significant at p = 0.018. There was no significant correlation between cultured or ex vivo ELISPOT data and protection from clinical malaria. The combination of TNFα(+) CD4(+) T cells and anti-CS antibody statistically accounted for the protective effect of vaccination in a Cox regression model. CONCLUSIONS: RTS,S/AS01(E) induces CS-specific Th1 T cell responses in young children living in a malaria endemic area. The combination of anti-CS antibody concentrations titers and CS-specific TNFα(+) CD4(+) T cells could account for the level of protection conferred by RTS,S/AS01(E). The correlation between CS-specific TNFα(+) CD4(+) T cells and protection needs confirmation in other datasets.


Asunto(s)
Especificidad de Anticuerpos/inmunología , Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Linfocitos T/inmunología , Vacunación/métodos , Secuencia de Aminoácidos , Preescolar , Humanos , Lactante , Interferón gamma/biosíntesis , Interferón gamma/metabolismo , Interleucina-2/biosíntesis , Interleucina-2/metabolismo , Espacio Intracelular/metabolismo , Vacunas contra la Malaria/efectos adversos , Vacunas contra la Malaria/química , Datos de Secuencia Molecular , Linfocitos T/citología , Linfocitos T/metabolismo , Factores de Tiempo , Vacunación/efectos adversos , Vacunas de Subunidad/efectos adversos , Vacunas de Subunidad/química , Vacunas de Subunidad/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...