Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4186, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443365

RESUMEN

Most proviruses persisting in people living with HIV (PWH) on antiretroviral therapy (ART) are defective. However, rarer intact proviruses almost always reinitiate viral rebound if ART stops. Therefore, assessing therapies to prevent viral rebound hinges on specifically quantifying intact proviruses. We evaluated the same samples from 10 male PWH on ART using the two-probe intact proviral DNA assay (IPDA) and near full length (nfl) Q4PCR. Both assays admitted similar ratios of intact to total HIV DNA, but IPDA found ~40-fold more intact proviruses. Neither assay suggested defective proviruses decay over 10 years. However, the mean intact half-lives were different: 108 months for IPDA and 65 months for Q4PCR. To reconcile this difference, we modeled additional longitudinal IPDA data and showed that decelerating intact decay could arise from very long-lived intact proviruses and/or misclassified defective proviruses: slowly decaying defective proviruses that are intact in IPDA probe locations (estimated up to 5%, in agreement with sequence library based predictions). The model also demonstrates how misclassification can lead to underestimated efficacy of therapies that exclusively reduce intact proviruses. We conclude that sensitive multi-probe assays combined with specific nfl-verified assays would be optimal to document absolute and changing levels of intact HIV proviruses.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Masculino , Provirus/genética , VIH-1/genética , ADN Viral/genética , Linfocitos T CD4-Positivos , Carga Viral
2.
Cell Rep ; 40(10): 111311, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36070690

RESUMEN

Antiretroviral therapy controls, but does not cure, HIV-1 infection due to a reservoir of rare CD4+ T cells harboring latent proviruses. Little is known about the transcriptional program of latent cells. Here, we report a strategy to enrich clones of latent cells carrying intact, replication-competent HIV-1 proviruses from blood based on their expression of unique T cell receptors. Latent cell enrichment enabled single-cell transcriptomic analysis of 1,050 CD4+ T cells belonging to expanded clones harboring intact HIV-1 proviruses from 6 different individuals. The analysis reveals that most of these cells are T effector memory cells that are enriched for expression of HLA-DR, HLA-DP, CD74, CCL5, granzymes A and K, cystatin F, LYAR, and DUSP2. We conclude that expanded clones of latent cells carrying intact HIV-1 proviruses persist preferentially in a distinct CD4+ T cell population, opening possibilities for eradication.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Linfocitos T CD4-Positivos/metabolismo , Células Clonales , Proteínas de Unión al ADN/metabolismo , Expresión Génica , VIH-1/genética , VIH-1/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Provirus/genética , Provirus/metabolismo , Latencia del Virus/genética
3.
J Exp Med ; 218(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34636876

RESUMEN

Latent intact HIV-1 proviruses persist in a small subset of long-lived CD4+ T cells that can undergo clonal expansion in vivo. Expanded clones of CD4+ T cells dominate latent reservoirs in individuals on long-term antiretroviral therapy (ART) and represent a major barrier to HIV-1 cure. To determine how integration landscape might contribute to latency, we analyzed integration sites of near full length HIV-1 genomes from individuals on long-term ART, focusing on individuals whose reservoirs are highly clonal. We find that intact proviruses in expanded CD4+ T cell clones are preferentially integrated within Krüppel-associated box (KRAB) domain-containing zinc finger (ZNF) genes. ZNF genes are associated with heterochromatin in memory CD4+ T cells; nevertheless, they are expressed in these cells under steady-state conditions. In contrast to genes carrying unique integrations, ZNF genes carrying clonal intact integrations are down-regulated upon cellular activation. Together, the data suggest selected genomic sites, including ZNF genes, can be especially permissive for maintaining HIV-1 latency during memory CD4+ T cell expansion.


Asunto(s)
Fármacos Anti-VIH/farmacología , Linfocitos T CD4-Positivos/virología , Infecciones por VIH/virología , VIH-1/fisiología , Interacciones Huésped-Patógeno/fisiología , Adulto , Linfocitos T CD4-Positivos/efectos de los fármacos , Femenino , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , VIH-1/patogenicidad , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Persona de Mediana Edad , Provirus/genética , Integración Viral/fisiología , Latencia del Virus
5.
J Exp Med ; 217(7)2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32311008

RESUMEN

Antiretroviral therapy suppresses but does not cure HIV-1 infection due to the existence of a long-lived reservoir of latently infected cells. The reservoir has an estimated half-life of 44 mo and is largely composed of clones of infected CD4+ T cells. The long half-life appears to result in part from expansion and contraction of infected CD4+ T cell clones. However, the mechanisms that govern this process are poorly understood. To determine whether the clones might result from and be maintained by exposure to antigen, we measured responses of reservoir cells to a small subset of antigens from viruses that produce chronic or recurrent infections. Despite the limited panel of test antigens, clones of antigen-responsive CD4+ T cells containing defective or intact latent proviruses were found in seven of eight individuals studied. Thus, chronic or repeated exposure to antigen may contribute to the longevity of the HIV-1 reservoir by stimulating the clonal expansion of latently infected CD4+ T cells.


Asunto(s)
Antígenos Virales/inmunología , Linfocitos T CD4-Positivos/inmunología , Reservorios de Enfermedades/virología , VIH-1/fisiología , Proliferación Celular , Células Clonales , Humanos , Filogenia , Provirus
6.
Cell Host Microbe ; 27(4): 519-530, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32272077

RESUMEN

Antiretroviral therapy (ART) inhibits HIV replication but is not curative. During ART, the integrated HIV genome persists indefinitely within CD4+ T cells and perhaps other cells. Here, we describe the mechanisms thought to contribute to its persistence during treatment and highlight findings from numerous recent studies describing the importance of cell proliferation in that process. Continued progress elucidating the biology will enhance our ability to develop effective curative interventions.


Asunto(s)
Infecciones por VIH , VIH-1 , Latencia del Virus , Síndrome de Inmunodeficiencia Adquirida/tratamiento farmacológico , Factores de Edad , Animales , Antirretrovirales/farmacología , Terapia Antirretroviral Altamente Activa/tendencias , Linfocitos B/virología , Biomarcadores , Linfocitos T CD4-Positivos/virología , Coinfección , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/crecimiento & desarrollo , VIH-1/metabolismo , Interacciones Microbiota-Huesped , Humanos , Factores Sexuales , Carga Viral , Latencia del Virus/efectos de los fármacos , Latencia del Virus/fisiología , Replicación Viral
7.
J Clin Invest ; 130(6): 2803-2805, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32338639

RESUMEN

Discontinued antiretroviral therapy (ART) results in uncontrolled HIV replication in most cases. How the virus population that persists during ART escapes immune control remains unknown. In this issue of the JCI, Mitchell and authors investigated plasmacytoid dendritic cells (pDCs) from the blood of individuals living with HIV. After ART was discontinued and as the virus began to spread, an apparently functional pDC response emerged. Notably, these pDCs were initially capable of producing high levels of type I IFN, but rapidly lost this capacity, even before the virus became readily detectable in blood. This study suggests that dysfunctional pDCs are a key initial mechanism associated with poor HIV control. These innate immune responses might be targeted in the emerging efforts to cure HIV disease.


Asunto(s)
Infecciones por VIH , Células Dendríticas , Infecciones por VIH/tratamiento farmacológico , Humanos , Inmunidad Innata
8.
Curr Opin HIV AIDS ; 14(2): 108-114, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30531293

RESUMEN

PURPOSE OF REVIEW: To provide a summary of the recent data examining infected CD4+ T cell dynamics during ART and implications for cure strategies. RECENT FINDINGS: HIV-1 cure is a worldwide unmet medical need. Although combination antiretroviral therapies effectively suppress HIV-1 replication in vivo, viral rebound occurs shortly after therapy cessation. The major barrier to HIV-1 cure is a pool of latently infected CD4+ T cells, called the latent reservoir, which is established early during infection, has a long half-life in vivo, and is not eliminated by treatment. It was thought that the stability of the reservoir came from long-lived latently infected CD4+ T cells, but more recent data suggests that the reservoir is dynamic, such that there is an equilibrium in which proliferation of HIV-1-infected cells is offset by an equivalent loss of cells harboring HIV-1 DNA. SUMMARY: We review the evidence to support this dynamic model of persistence, mechanisms by which infected cells expand and are eliminated, and discuss the impact of a dynamic reservoir on the future of HIV-1 cure studies.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Infecciones por VIH/inmunología , VIH-1/fisiología , Animales , Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/genética , Humanos , Latencia del Virus , Replicación Viral
9.
Proc Natl Acad Sci U S A ; 115(48): E11341-E11348, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30420517

RESUMEN

Combination antiretroviral therapy controls but does not cure HIV-1 infection because a small fraction of cells harbor latent viruses that can produce rebound viremia when therapy is interrupted. The circulating latent virus reservoir has been documented by a variety of methods, most prominently by viral outgrowth assays (VOAs) in which CD4+ T cells are activated to produce virus in vitro, or more recently by amplifying proviral near full-length (NFL) sequences from DNA. Analysis of samples obtained in clinical studies in which individuals underwent analytical treatment interruption (ATI), showed little if any overlap between circulating latent viruses obtained from outgrowth cultures and rebound viruses from plasma. To determine whether intact proviruses amplified from DNA are more closely related to rebound viruses than those obtained from VOAs, we assayed 12 individuals who underwent ATI after infusion of a combination of two monoclonal anti-HIV-1 antibodies. A total of 435 intact proviruses obtained by NFL sequencing were compared with 650 latent viruses from VOAs and 246 plasma rebound viruses. Although, intact NFL and outgrowth culture sequences showed similar levels of stability and diversity with 39% overlap, the size of the reservoir estimated from NFL sequencing was larger than and did not correlate with VOAs. Finally, intact proviruses documented by NFL sequencing showed no sequence overlap with rebound viruses; however, they appear to contribute to recombinant viruses found in plasma during rebound.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Infecciones por VIH/virología , VIH-1/fisiología , Provirus/fisiología , Fármacos Anti-VIH/administración & dosificación , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH/administración & dosificación , Infecciones por VIH/tratamiento farmacológico , VIH-1/clasificación , VIH-1/genética , VIH-1/crecimiento & desarrollo , Humanos , Filogenia , Provirus/clasificación , Provirus/genética , Provirus/crecimiento & desarrollo , Latencia del Virus , Replicación Viral
10.
Elife ; 72018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29714165

RESUMEN

Human immunodeficiency virus (HIV) infection is currently incurable, due to the persistence of latently infected cells. The 'shock and kill' approach to a cure proposes to eliminate this reservoir via transcriptional activation of latent proviruses, enabling direct or indirect killing of infected cells. Currently available latency-reversing agents (LRAs) have however proven ineffective. To understand why, we used a novel HIV reporter strain in primary CD4+ T cells and determined which latently infected cells are reactivatable by current candidate LRAs. Remarkably, none of these agents reactivated more than 5% of cells carrying a latent provirus. Sequencing analysis of reactivatable vs. non-reactivatable populations revealed that the integration sites were distinguishable in terms of chromatin functional states. Our findings challenge the feasibility of 'shock and kill', and suggest the need to explore other strategies to control the latent HIV reservoir.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Cromatina , Infecciones por VIH/virología , VIH-1/fisiología , Latencia del Virus , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Células Cultivadas , Infecciones por VIH/inmunología , Infecciones por VIH/patología , Humanos , Virión , Activación Viral , Integración Viral
11.
Nat Med ; 24(5): 604-609, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29686423

RESUMEN

Despite suppressive combination antiretroviral therapy (ART), latent HIV-1 proviruses persist in patients. This latent reservoir is established within 48-72 h after infection, has a long half-life1,2, enables viral rebound when ART is interrupted, and is the major barrier to a cure for HIV-1 3 . Latent cells are exceedingly rare in blood (∼1 per 1 × 106 CD4+ T cells) and are typically enumerated by indirect means, such as viral outgrowth assays4,5. We report a new strategy to purify and characterize single reactivated latent cells from HIV-1-infected individuals on suppressive ART. Surface expression of viral envelope protein was used to enrich reactivated latent T cells producing HIV RNA, and single-cell analysis was performed to identify intact virus. Reactivated latent cells produce full-length viruses that are identical to those found in viral outgrowth cultures and represent clones of in vivo expanded T cells, as determined by their T cell receptor sequence. Gene-expression analysis revealed that these cells share a transcriptional profile that includes expression of genes implicated in silencing the virus. We conclude that reactivated latent T cells isolated from blood can share a gene-expression program that allows for cell division without activation of the cell death pathways that are normally triggered by HIV-1 replication.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Perfilación de la Expresión Génica , VIH-1/fisiología , Latencia del Virus/fisiología , Células Clonales , Humanos , Análisis de Componente Principal , ARN Viral/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual
12.
J Exp Med ; 214(4): 875-876, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28348204

RESUMEN

A long-lived latent reservoir for HIV-1 persists in CD4+ T cells despite antiretroviral therapy and is the major barrier to cure. In this issue of JEM, Hosmane et al. show that T cell proliferation could explain the long-term persistence of this reservoir.


Asunto(s)
Linfocitos T CD4-Positivos/virología , VIH-1/fisiología , División Celular , Humanos , Activación de Linfocitos , Integración Viral
13.
Proc Natl Acad Sci U S A ; 113(49): E7908-E7916, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27872306

RESUMEN

HIV-1-infected individuals harbor a latent reservoir of infected CD4+ T cells that is not eradicated by antiretroviral therapy (ART). This reservoir presents the greatest barrier to an HIV-1 cure and has remained difficult to characterize, in part, because the vast majority of integrated sequences are defective and incapable of reactivation. To characterize the replication-competent reservoir, we have combined two techniques, quantitative viral outgrowth and qualitative sequence analysis of clonal outgrowth viruses. Leukapheresis samples from four fully ART-suppressed, chronically infected individuals were assayed at two time points separated by a 4- to 6-mo interval. Overall, 54% of the viruses emerging from the latent reservoir showed gp160 env sequences that were identical to at least one other virus. Moreover, 43% of the env sequences from viruses emerging from the reservoir were part of identical groups at the two time points. Groups of identical expanded sequences made up 54% of proviral DNA, and, as might be expected, the sequences of replication-competent viruses in the active reservoir showed limited overlap with integrated proviral DNA, most of which is known to represent defective viruses. Finally, there was an inverse correlation between proviral DNA clone size and the probability of reactivation, suggesting that replication-competent viruses are less likely to be found among highly expanded provirus-containing cell clones.

14.
J Immunol ; 194(11): 5253-60, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25917102

RESUMEN

The hormone leptin plays a key role in energy homeostasis, and the absence of either leptin or its receptor (LepR) leads to severe obesity and metabolic disorders. To avoid indirect effects and to address the cell-intrinsic role of leptin signaling in the immune system, we conditionally targeted LepR in T cells. In contrast with pleiotropic immune disorders reported in obese mice with leptin or LepR deficiency, we found that LepR deficiency in CD4(+) T cells resulted in a selective defect in both autoimmune and protective Th17 responses. Reduced capacity for differentiation toward a Th17 phenotype by lepr-deficient T cells was attributed to reduced activation of the STAT3 and its downstream targets. This study establishes cell-intrinsic roles for LepR signaling in the immune system and suggests that leptin signaling during T cell differentiation plays a crucial role in T cell peripheral effector function.


Asunto(s)
Diferenciación Celular/inmunología , Leptina/inmunología , Obesidad/inmunología , Receptores de Leptina/inmunología , Células Th17/citología , Animales , Autoinmunidad/genética , Autoinmunidad/inmunología , Diferenciación Celular/genética , Células Cultivadas , Citrobacter rodentium/inmunología , Colitis/inmunología , Infecciones por Enterobacteriaceae/inmunología , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Receptores de Leptina/genética , Factor de Transcripción STAT3/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Células Th17/inmunología
15.
Cell ; 160(3): 420-32, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25635456

RESUMEN

The barrier to curing HIV-1 is thought to reside primarily in CD4(+) T cells containing silent proviruses. To characterize these latently infected cells, we studied the integration profile of HIV-1 in viremic progressors, individuals receiving antiretroviral therapy, and viremic controllers. Clonally expanded T cells represented the majority of all integrations and increased during therapy. However, none of the 75 expanded T cell clones assayed contained intact virus. In contrast, the cells bearing single integration events decreased in frequency over time on therapy, and the surviving cells were enriched for HIV-1 integration in silent regions of the genome. Finally, there was a strong preference for integration into, or in close proximity to, Alu repeats, which were also enriched in local hotspots for integration. The data indicate that dividing clonally expanded T cells contain defective proviruses and that the replication-competent reservoir is primarily found in CD4(+) T cells that remain relatively quiescent.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Infecciones por VIH/virología , VIH-1/fisiología , Integración Viral , Latencia del Virus , Elementos Alu , Células Clonales , Virus Defectuosos/genética , Virus Defectuosos/fisiología , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , Humanos , Memoria Inmunológica , Provirus/fisiología , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...