Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 11: 246, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256353

RESUMEN

Plasmodium falciparum parasites are increasingly drug-resistant, requiring the search for novel antimalarials with distinct modes of action. Enzymes in the glutathione pathway, including glutathione S-transferase (GST), show promise as novel antimalarial targets. This study aims to better understand the biological function of Plasmodium GST, assess its potential as a drug target, and identify novel antiplasmodial compounds using the rodent model P. berghei. By using reverse genetics, we provided evidence that GST is essential for survival of P. berghei intra-erythrocytic stages and is a valid target for drug development. A structural model of the P. berghei glutathione S-transferase (PbGST) protein was generated and used in a structure-based screening of 900,000 compounds from the ChemBridge Hit2Lead library. Forty compounds were identified as potential inhibitors and analyzed in parasite in vitro drug susceptibility assays. One compound, CB-27, exhibited antiplasmodial activity with an EC50 of 0.5 µM toward P. berghei and 0.9 µM toward P. falciparum multidrug-resistant Dd2 clone B2 parasites. Moreover, CB-27 showed a concentration-dependent inhibition of the PbGST enzyme without inhibiting the human ortholog. A shape similarity screening using CB-27 as query resulted in the identification of 24 novel chemical scaffolds, with six of them showing antiplasmodial activity ranging from EC50 of 0.6-4.9 µM. Pharmacokinetic and toxicity predictions suggest that the lead compounds have drug-likeness properties. The antiplasmodial potency, the absence of hemolytic activity, and the predicted drug-likeness properties position these compounds for lead optimization and further development as antimalarials.

2.
PLoS Pathog ; 12(7): e1005763, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27467575

RESUMEN

A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts.


Asunto(s)
Antimaláricos/uso terapéutico , Conjuntos de Datos como Asunto , Descubrimiento de Drogas/métodos , Malaria/tratamiento farmacológico , Enfermedades Desatendidas/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Humanos , Bibliotecas de Moléculas Pequeñas
3.
Mol Cancer Ther ; 14(11): 2497-507, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26358752

RESUMEN

Ezrin is a member of the ERM (ezrin, radixin, moesin) family of proteins and functions as a linker between the plasma membrane and the actin cytoskeleton. Ezrin is a key driver of tumor progression and metastatic spread of osteosarcoma. We discovered a quinoline-based small molecule, NSC305787, that directly binds to ezrin and inhibits its functions in promoting invasive phenotype. NSC305787 possesses a very close structural similarity to commonly used quinoline-containing antimalarial drugs. On the basis of this similarity and of recent findings that ezrin has a likely role in the pathogenesis of malaria infection, we screened antimalarial compounds in an attempt to identify novel ezrin inhibitors with better efficacy and drug properties. Screening of Medicines for Malaria Venture (MMV) Malaria Box compounds for their ability to bind to recombinant ezrin protein yielded 12 primary hits with high selective binding activity. The specificity of the hits on ezrin function was confirmed by inhibition of the ezrin-mediated cell motility of osteosarcoma cells. Compounds were further tested for phenocopying the morphologic defects associated with ezrin suppression in zebrafish embryos as well as for inhibiting the lung metastasis of high ezrin-expressing osteosarcoma cells. The compound MMV667492 exhibited potent anti-ezrin activity in all biologic assays and had better physicochemical properties for drug-likeness than NSC305787. The drug-like compounds MMV020549 and MMV666069 also showed promising activities in functional assays. Thus, our study suggests further evaluation of antimalarial compounds as a novel class of antimetastatic agents for the treatment of metastatic osteosarcoma.


Asunto(s)
Adamantano/análogos & derivados , Antineoplásicos/farmacología , Proteínas del Citoesqueleto/antagonistas & inhibidores , Osteosarcoma/tratamiento farmacológico , Quinolinas/farmacología , Adamantano/farmacología , Animales , Antimaláricos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteínas del Citoesqueleto/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Immunoblotting , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/secundario , Ratones Endogámicos BALB C , Osteosarcoma/metabolismo , Osteosarcoma/patología , Bibliotecas de Moléculas Pequeñas/farmacología , Resonancia por Plasmón de Superficie , Pez Cebra/embriología , Pez Cebra/metabolismo
4.
Malar J ; 13: 313, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25115675

RESUMEN

BACKGROUND: Subtilisin-like protease 2 (SUB2) is a conserved serine protease utilized by Plasmodium parasites as a surface sheddase required for successful merozoite invasion of host red blood cells and has been implicated in ookinete invasion of the mosquito midgut. To determine if SUB2 is a suitable vaccine target to interfere with malaria parasite development, the effects of SUB2-immunization on the Plasmodium life cycle were examined in its vertebrate and invertebrate hosts. METHODS: Swiss Webster mice were immunized with SUB2 peptides conjugated to Keyhole limpet hemocyanin (KLH) or KLH alone, and then challenged with Plasmodium berghei. To determine the effects of immunization on parasite development, infected mice were evaluated by blood film and Giemsa staining. In addition, collected immune sera were used to perform passive immunization experiments in non-immunized, P. berghei-infected mice to determine the potential role of SUB2 in parasite development in the mosquito. RESULTS: Following P. berghei challenge, SUB2-immunized mice develop a lower parasitaemia and show improved survival when compared to control immunized mice. Moreover, SUB2 immunization results in an increase in the number of multiply invaded red blood cells, suggesting that SUB2 antibodies interfere with merozoite invasion. Passive immunization experiments imply that SUB2 may not have a major role in ookinete invasion, but this requires further investigation. CONCLUSION: By interfering with red blood cell invasion, immunization against SUB2 limits malaria parasite development and confers protection from severe malaria. Together, these results provide proof-of-principle evidence for future investigation into the use of SUB2 as a vaccine or drug target to interrupt parasite development in more relevant human malaria models.


Asunto(s)
Eritrocitos/parasitología , Vacunas contra la Malaria/inmunología , Malaria/inmunología , Merozoítos/inmunología , Plasmodium berghei/inmunología , Secuencia de Aminoácidos , Animales , Femenino , Malaria/prevención & control , Vacunas contra la Malaria/química , Ratones , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Subtilisina , Vacunas Sintéticas/química , Vacunas Sintéticas/inmunología
5.
PLoS One ; 9(3): e92457, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24658545

RESUMEN

Human Interleukin-3 (IL-3) is a lymphokine member of a class of transiently expressed mRNAs harboring Adenosine/Uridine-Rich Elements (ARE) in their 3' untranslated regions (3'-UTRs). The regulatory effects of AREs are often mediated by specific ARE-binding proteins (ARE-BPs). In this report, we show that the human IL-3 3'-UTR plays a post-transcriptional regulation role in two human transformed cell lines. More specifically, we demonstrate that the hIL-3 3'-UTR represses the translation of a luciferase reporter both in HeLa and Jurkat T-cells. These results also revealed that the hIL-3 3'-UTR-mediated translational repression is exerted by an 83 nt region comprised mainly by AREs and some non-ARE sequences. Moreover, electrophoretic mobility shift assays (EMSAs) and UV-crosslinking analysis show that this hIL-3 ARE-rich region recruits five specific protein complexes, including the ARE-BPs HuR and TIA-1. HuR binding to this ARE-rich region appears to be spatially modulated during T-cell activation. Together, these results suggest that HuR recognizes the ARE-rich region and plays a role in the IL-3 3'-UTR-mediated post-transcriptional control in T-cells.


Asunto(s)
Regiones no Traducidas 3' , Proteínas ELAV/fisiología , Interleucina-3/genética , Interleucina-3/metabolismo , Proteínas de Unión al ARN/fisiología , Proteína 1 Similar a ELAV , Ensayo de Cambio de Movilidad Electroforética , Humanos , Células Jurkat , Activación de Linfocitos , Proteínas de Unión a Poli(A)/fisiología , Antígeno Intracelular 1 de las Células T , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...