Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38674639

RESUMEN

Bacteriophages (phages) are potential alternatives to chemical antimicrobials against pathogens of public health significance. Understanding the diversity and host specificity of phages is important for developing effective phage biocontrol approaches. Here, we assessed the host range, morphology, and genetic diversity of eight Salmonella enterica phages isolated from a wastewater treatment plant. The host range analysis revealed that six out of eight phages lysed more than 81% of the 43 Salmonella enterica isolates tested. The genomic sequences of all phages were determined. Whole-genome sequencing (WGS) data revealed that phage genome sizes ranged from 41 to 114 kb, with GC contents between 39.9 and 50.0%. Two of the phages SB13 and SB28 represent new species, Epseptimavirus SB13 and genera Macdonaldcampvirus, respectively, as designated by the International Committee for the Taxonomy of Viruses (ICTV) using genome-based taxonomic classification. One phage (SB18) belonged to the Myoviridae morphotype while the remaining phages belonged to the Siphoviridae morphotype. The gene content analyses showed that none of the phages possessed virulence, toxin, antibiotic resistance, type I-VI toxin-antitoxin modules, or lysogeny genes. Three (SB3, SB15, and SB18) out of the eight phages possessed tailspike proteins. Whole-genome-based phylogeny of the eight phages with their 113 homologs revealed three clusters A, B, and C and seven subclusters (A1, A2, A3, B1, B2, C1, and C2). While cluster C1 phages were predominantly isolated from animal sources, cluster B contained phages from both wastewater and animal sources. The broad host range of these phages highlights their potential use for controlling the presence of S. enterica in foods.

2.
Genome Announc ; 5(45)2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29122883

RESUMEN

Eight Lactobacillus strains, each intrinsically resistant to an antibiotic, were isolated from two commercial probiotic products. Whole-genome sequencing identified two efflux transporters, a multidrug and extrusion protein (MATE) efflux transporter, and LmrCD, which may contribute to their intrinsic antibiotic resistance and may therefore facilitate their survival in the intestinal microbiota following antibiotic therapy.

3.
Microbiol Spectr ; 5(3)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28664828

RESUMEN

The era of genomics has allowed for characterization of phages for use as antimicrobials to treat animal infections with a level of precision never before realized. As more research in phage therapy has been conducted, several advantages of phage therapy have been realized, including the ubiquitous nature, specificity, prevalence in the biosphere, and low inherent toxicity of phages, which makes them a safe and sustainable technology for control of animal diseases. These unique qualities of phages have led to several opportunities with respect to emerging trends in infectious disease treatment. However, the opportunities are tempered by several challenges to the successful implementation of phage therapy, such as the fact that an individual phage can only infect one or a few bacterial strains, meaning that large numbers of different phages will likely be needed to treat infections caused by multiple species of bacteria. In addition, phages are only effective if enough of them can reach the site of bacterial colonization, but clearance by the immune system upon introduction to the animal is a reality that must be overcome. Finally, bacterial resistance to the phages may develop, resulting in treatment failure. Even a successful phage infection and lysis of its host has consequences, because large amounts of endotoxin are released upon lysis of Gram-negative bacteria, which can lead to local and systemic complications. Overcoming these challenges will require careful design and development of phage cocktails, including comprehensive characterization of phage host range and assessment of immunological risks associated with phage treatment.


Asunto(s)
Infecciones Bacterianas/terapia , Infecciones Bacterianas/veterinaria , Enfermedades de los Bovinos/terapia , Terapia de Fagos/métodos , Enfermedades de las Aves de Corral/terapia , Enfermedades de los Porcinos/terapia , Crianza de Animales Domésticos/métodos , Animales , Antibacterianos/uso terapéutico , Bacterias/virología , Infecciones Bacterianas/prevención & control , Infecciones Bacterianas/transmisión , Bacteriófagos/genética , Bovinos , Enfermedades de los Bovinos/microbiología , Carne/microbiología , Aves de Corral/microbiología , Enfermedades de las Aves de Corral/microbiología , Rumiantes/microbiología , Porcinos , Enfermedades de los Porcinos/microbiología
4.
Front Microbiol ; 8: 1283, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28740489

RESUMEN

Salmonella enterica is a bacterial species that is a major cause of illness in humans and food-producing animals. S. enterica exhibits considerable inter-serovar diversity, as evidenced by the large number of host adapted serovars that have been identified. The development of methods to assess genome diversity in S. enterica will help to further define the limits of diversity in this foodborne pathogen. Thus, we evaluated a PCR assay, which targets prophage integrase genes, as a rapid method to investigate S. enterica genome diversity. To evaluate the PCR prophage integrase assay, 49 isolates of S. enterica were selected, including 19 clinical isolates from clonal serovars (Enteritidis and Heidelberg) that commonly cause human illness, and 30 isolates from food-associated Salmonella serovars that rarely cause human illness. The number of integrase genes identified by the PCR assay was compared to the number of integrase genes within intact prophages identified by whole genome sequencing and phage finding program PHASTER. The PCR assay identified a total of 147 prophage integrase genes within the 49 S. enterica genomes (79 integrase genes in the food-associated Salmonella isolates, 50 integrase genes in S. Enteritidis, and 18 integrase genes in S. Heidelberg). In comparison, whole genome sequencing and PHASTER identified a total of 75 prophage integrase genes within 102 intact prophages in the 49 S. enterica genomes (44 integrase genes in the food-associated Salmonella isolates, 21 integrase genes in S. Enteritidis, and 9 integrase genes in S. Heidelberg). Collectively, both the PCR assay and PHASTER identified the presence of a large diversity of prophage integrase genes in the food-associated isolates compared to the clinical isolates, thus indicating a high degree of diversity in the food-associated isolates, and confirming the clonal nature of S. Enteritidis and S. Heidelberg. Moreover, PHASTER revealed a diversity of 29 different types of prophages and 23 different integrase genes within the food-associated isolates, but only identified four different phages and integrase genes within clonal isolates of S. Enteritidis and S. Heidelberg. These results demonstrate the potential usefulness of PCR based detection of prophage integrase genes as a rapid indicator of genome diversity in S. enterica.

5.
Front Microbiol ; 8: 1108, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28676794

RESUMEN

Foodborne illnesses continue to have an economic impact on global health care systems. There is a growing concern regarding the increasing frequency of antibiotic resistance in foodborne bacterial pathogens and how such resistance may affect treatment outcomes. In an effort to better understand how to reduce the spread of resistance, many research studies have been conducted regarding the methods by which antibiotic resistance genes are mobilized and spread between bacteria. Transduction by bacteriophages (phages) is one of many horizontal gene transfer mechanisms, and recent findings have shown phage-mediated transduction to be a significant contributor to dissemination of antibiotic resistance genes. Here, we review the viability of transduction as a contributing factor to the dissemination of antibiotic resistance genes in foodborne pathogens of the Enterobacteriaceae family, including non-typhoidal Salmonella and Shiga toxin-producing Escherichia coli, as well as environmental factors that increase transduction of antibiotic resistance genes.

6.
Front Microbiol ; 8: 996, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28626454

RESUMEN

The Salmonella Syst-OMICS consortium is sequencing 4,500 Salmonella genomes and building an analysis pipeline for the study of Salmonella genome evolution, antibiotic resistance and virulence genes. Metadata, including phenotypic as well as genomic data, for isolates of the collection are provided through the Salmonella Foodborne Syst-OMICS database (SalFoS), at https://salfos.ibis.ulaval.ca/. Here, we present our strategy and the analysis of the first 3,377 genomes. Our data will be used to draw potential links between strains found in fresh produce, humans, animals and the environment. The ultimate goals are to understand how Salmonella evolves over time, improve the accuracy of diagnostic methods, develop control methods in the field, and identify prognostic markers for evidence-based decisions in epidemiology and surveillance.

7.
Genome Announc ; 5(19)2017 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-28495759

RESUMEN

Two similar phage-like plasmids carrying CTX-M-15 resistance cassettes were identified from two environmental Escherichia coli isolates. They demonstrate strong nucleotide sequence identity to the phage-like plasmid pECOH89 and Salmonella bacteriophage SSU5.

8.
Genome Announc ; 5(19)2017 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-28495760

RESUMEN

A phage-like plasmid isolated from a clinical isolate of Salmonella enterica serovar Derby has strong nucleotide sequence identity to the phage-like plasmids pSTM_phi isolated from Salmonella enterica serovar Typhimurium L495, AnCo1 and AnCo2 from Escherichia coli 243 and Escherichia coli 244, and the virulent Salmonella-specific SSU5 bacteriophage.

9.
Int Immunol ; 26(8): 451-65, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24894009

RESUMEN

CD20 is an attractive therapeutic target given the success of its monoclonal antibody, Rituximab, in the treatment of B-cell malignancies and B-cell-mediated autoimmune diseases. Treatment with Rituximab causes a rapid depletion of B cells and a decrease in disease symptoms. Despite the clinical efficiency of Rituximab, its mechanism of action is not completely understood. In this study, we aimed at further investigating the Rituximab-induced cell death and the factors affecting such responses. Our results indicate that Rituximab-induced cell death depends on the nature of the cells and levels of CD20 expression on the cell surface. Coexpression of CD20 with CD40, a member of the TNF receptor family that is known to be physically associated with CD20 on the cell surface, enhances the apoptotic response induced by Rituximab. Inhibiting the formation of CD40 disulfide-bound-homodimers, a process required for some CD40 signaling, further enhances Rituximab-induced cell death. Cell death induced by anti-CD40 mAb is also upregulated by the presence of CD20, suggesting a bidirectional influence of the CD20/CD40 association. Moreover, treating cells with both anti-CD20 and anti-CD40 antibodies improves the cell death response induced by a single-agent treatment. These results highlight the role of the CD20/CD40 association in triggering B-cell depletion and may pave the way for an alternative more efficient therapeutic strategy in treating B-cell-mediated disorders.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/metabolismo , Antígenos CD20/metabolismo , Antineoplásicos/metabolismo , Antígenos CD40/metabolismo , Membrana Celular/metabolismo , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales de Origen Murino/farmacología , Antígenos CD20/genética , Antineoplásicos/farmacología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/metabolismo , Antígenos CD40/antagonistas & inhibidores , Antígenos CD40/química , Antígenos CD40/genética , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Sinergismo Farmacológico , Expresión Génica , Humanos , Inmunofenotipificación , Activación de Linfocitos/inmunología , Mutación , Unión Proteica , Multimerización de Proteína , Receptores Fc/metabolismo , Rituximab
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...