Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Appl Oral Sci ; 31: e20220436, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36946828

RESUMEN

METHODOLOGY: Inducible nitric oxide synthase (iNOS) is one of the enzymes responsible for the synthesis of nitric oxide (NO), which is an important signaling molecule with effects on blood vessels, leukocytes, and bone cells. However, the role of iNOS in alveolar bone healing remains unclear. This study investigated the role of iNOS in alveolar bone healing after tooth extraction in mice. C57Bl/6 wild type (WT) and iNOS genetically deficient (iNOS-KO) mice were subjected to upper incision tooth extraction, and alveolar bone healing was evaluated by micro-computed tomography (µCT) and histological/histomorphometric, birefringence, and molecular methods. RESULTS: The expression of iNOS had very low control conditions, whereas a significant increase is observed in healing sites of WT mice, where iNOS mRNA levels peak at 7d time point, followed by a relative decrease at 14d and 21d. Regarding bone healing, both WT and iNOS-KO groups showed the usual phases characterized by the presence of clots, granulation tissue development along the inflammatory cell infiltration, angiogenesis, proliferation of fibroblasts and extracellular matrix synthesis, bone neoformation, and remodeling. The overall micro-computed tomography and histomorphometric and birefringence analyses showed similar bone healing readouts when WT and iNOS-KO strains are compared. Likewise, Real-Time PCR array analysis shows an overall similar gene expression pattern (including bone formation, bone resorption, and inflammatory and immunological markers) in healing sites of WT and iNOS-KO mice. Moreover, molecular analysis shows that nNOS and eNOS were significantly upregulated in the iNOS-KO group, suggesting that other NOS isoforms could compensate the absence of iNOS. CONCLUSION: The absence of iNOS does not result in a significant modulation of bone healing readouts in iNOS-KO mice. The upregulation of nNOS and eNOS may compensate iNOS absence, explaining the similar bone healing outcome in WT and iNOS-KO strains.


Asunto(s)
Huesos , Óxido Nítrico Sintasa , Cicatrización de Heridas , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Regulación hacia Arriba , Microtomografía por Rayos X , Huesos/lesiones
2.
J. appl. oral sci ; 31: e20220436, 2023. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1430633

RESUMEN

Abstract Inducible nitric oxide synthase (iNOS) is one of the enzymes responsible for the synthesis of nitric oxide (NO), which is an important signaling molecule with effects on blood vessels, leukocytes, and bone cells. However, the role of iNOS in alveolar bone healing remains unclear. This study investigated the role of iNOS in alveolar bone healing after tooth extraction in mice. Methodology C57Bl/6 wild type (WT) and iNOS genetically deficient (iNOS-KO) mice were subjected to upper incision tooth extraction, and alveolar bone healing was evaluated by micro-computed tomography (μCT) and histological/histomorphometric, birefringence, and molecular methods. Results The expression of iNOS had very low control conditions, whereas a significant increase is observed in healing sites of WT mice, where iNOS mRNA levels peak at 7d time point, followed by a relative decrease at 14d and 21d. Regarding bone healing, both WT and iNOS-KO groups showed the usual phases characterized by the presence of clots, granulation tissue development along the inflammatory cell infiltration, angiogenesis, proliferation of fibroblasts and extracellular matrix synthesis, bone neoformation, and remodeling. The overall micro-computed tomography and histomorphometric and birefringence analyses showed similar bone healing readouts when WT and iNOS-KO strains are compared. Likewise, Real-Time PCR array analysis shows an overall similar gene expression pattern (including bone formation, bone resorption, and inflammatory and immunological markers) in healing sites of WT and iNOS-KO mice. Moreover, molecular analysis shows that nNOS and eNOS were significantly upregulated in the iNOS-KO group, suggesting that other NOS isoforms could compensate the absence of iNOS. Conclusion The absence of iNOS does not result in a significant modulation of bone healing readouts in iNOS-KO mice. The upregulation of nNOS and eNOS may compensate iNOS absence, explaining the similar bone healing outcome in WT and iNOS-KO strains.

3.
Bone ; 163: 116506, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35902072

RESUMEN

The alveolar bone repair process may be influenced by multiple local and systemic factors, which include immune system cells and mediators. Macrophages allegedly play important roles in the repair process, and the transition of an initial inflammatory M1 profile into a pro-reparative M2 profile theoretically contributes to a favorable repair outcome. In this context, considering immunoregulatory molecules as potential targets for improving bone repair, this study evaluated the role of the immunoregulatory molecule FTY720, previously described to favor the development of the M2 phenotype, in the process of alveolar bone healing in C57Bl/6 (WT) mice. Experimental groups submitted to tooth extraction and maintained under control conditions or treated with FTY720 were evaluated by microtomographic (µCT), histomorphometric, immunohistochemical and molecular analysis to characterize healing and host response features at 0, 1, 3, 7 and 14 days. Our results demonstrated that the FTY720 group presented higher bone tissue density, higher bone tissue volume, greater tissue volume fraction, greater number and thickness of trabeculae and a higher number of osteoblasts and osteoclasts than the control group. Accordingly, the bone markers BMP2, BMP7, ALPL, SOST and RANK mRNA expressions increased in the FTY720 treated group. Furthermore, the levels of FIZZ, ARG2 and IL-10 mRNA increased in the FTY720 group together with the presence of CD206+ cells, suggesting that the boost of bone formation mediated by FTY720 involves an increased polarization and activity of M2 macrophages in healing sites. Thus, our results demonstrate that FTY720 favored the process of alveolar bone repair, probably trough a strengthened M2 response, associated with an increased expression of markers osteogenic differentiation and activity markers. Immunoregulatory strategies based in the modulation of macrophage polarization profile can comprise effective tools to improve the bone repair process.


Asunto(s)
Clorhidrato de Fingolimod , Osteogénesis , Animales , Diferenciación Celular , Macrófagos , Ratones , ARN Mensajero
4.
Front Immunol ; 12: 782566, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992601

RESUMEN

Host inflammatory immune response comprises an essential element of the bone healing process, where M2 polarization allegedly contributes to a favorable healing outcome. In this context, immunoregulatory molecules that modulate host response, including macrophage polarization, are considered potential targets for improving bone healing. This study aims to evaluate the role of the immunoregulatory molecules VIP (Vasoactive intestinal peptide) and PACAP (Pituitary adenylate cyclase activating polypeptide), which was previously described to favor the development of the M2 phenotype, in the process of alveolar bone healing in C57Bl/6 (WT) mice. Experimental groups were submitted to tooth extraction and maintained under control conditions or treated with VIP or PACAP were evaluated by microtomographic (µCT), histomorphometric, immunohistochemical, and molecular analysis at 0, 3, 7, and 14 days to quantify tissue healing and host response indicators at the healing site. Gene expression analysis demonstrates the effectiveness of VIP or PACAP in modulating host response, evidenced by the early dominance of an M2-type response, which was paralleled by a significant increase in M2 (CD206+) in treated groups. However, despite the marked effect of M1/M2 balance in the healing sites, the histomorphometric analysis does not reveal an equivalent/corresponding modulation of the healing process. µCT reveals a slight increase in bone matrix volume and the trabecular thickness number in the PACAP group, while histomorphometric analyzes reveal a slight increase in the VIP group, both at a 14-d time-point; despite the increased expression of osteogenic factors, osteoblastic differentiation, activity, and maturation markers in both VIP and PACAP groups. Interestingly, a lower number of VIP and PACAP immunolabeled cells were observed in the treated groups, suggesting a reduction in endogenous production. In conclusion, while both VIP and PACAP treatments presented a significant immunomodulatory effect with potential for increased healing, no major changes were observed in bone healing outcome, suggesting that the signals required for bone healing under homeostatic conditions are already optimal, and additional signals do not improve an already optimal process. Further studies are required to elucidate the role of macrophage polarization in the bone healing process.


Asunto(s)
Proceso Alveolar/lesiones , Activación de Macrófagos/efectos de los fármacos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/administración & dosificación , Péptido Intestinal Vasoactivo/administración & dosificación , Cicatrización de Heridas/inmunología , Proceso Alveolar/efectos de los fármacos , Proceso Alveolar/inmunología , Proceso Alveolar/cirugía , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Modelos Animales de Enfermedad , Femenino , Inmunomodulación/efectos de los fármacos , Masculino , Ratones , Osteoblastos/fisiología , Osteogénesis/efectos de los fármacos , Osteogénesis/inmunología , Extracción Dental/efectos adversos , Cicatrización de Heridas/efectos de los fármacos , Microtomografía por Rayos X
5.
J Endod ; 45(10): 1228-1236, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31402064

RESUMEN

INTRODUCTION: The balance between the host proinflammatory immune response and the counteracting anti-inflammatory and reparative responses supposedly determine the outcome of periapical lesions. In this scenario, the vasoactive intestinal peptide (VIP) may exert a protective role because of its prominent immunoregulatory capacity. In this study, we investigated (in a cause-and-effect manner) the potential involvement of VIP in the development of human and experimental periapical lesions. METHODS: Periapical granulomas (n = 124) and control samples (n = 48) were comparatively assessed for VIP and multiple immunologic/activity marker expression through real-time polymerase chain reaction. Experimental periapical lesions (C57Bl/6 wild-type mice) were evaluated regarding endogenous VIP expression correlation with lesion development and the effect of recombinant VIP therapy in lesion outcome. CCR4KO and IL4KO strains and anti-glucocorticoid-induced TNFR-related protein inhibition were used to test the involvement of Treg and Th2 cells in VIP-mediated effects. RESULTS: VIP expression was more prevalent in periapical granulomas than in controls, presenting a positive association with immunoregulatory factors and an inverse association/correlation with proinflammatory mediators and the receptor activator of nuclear factor kappa B ligand/osteoprotegerin ratio. Endogenous VIP expression up-regulation was temporally associated with lesion immunoregulation and a decline of bone loss. VIP therapy in mice prompted the arrest of lesion development, being associated with an anti-inflammatory and proreparative response that limits the proinflammatory, Th1, Th17, and osteoclastogenic response in the periapex. The VIP protective effect was dependent of Treg migration and activity and independent of interleukin 4. CONCLUSIONS: Our results show that VIP overexpression in human and experimental periapical lesions is associated with lesion inactivity and that VIP therapy results in the attenuation of experimental lesion progression associated with the immunosuppressive response involving Treg cells.


Asunto(s)
Granuloma Periapical , Péptido Intestinal Vasoactivo , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Granuloma Periapical/metabolismo , Linfocitos T Reguladores , Células Th17 , Péptido Intestinal Vasoactivo/metabolismo
6.
Cytokine ; 114: 47-60, fev. 2019.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IPPROD, Sec. Est. Saúde SP | ID: biblio-1009636

RESUMEN

The exact role of inflammatory immune response in bone healing process is still unclear, but the success of the alveolar bone healing process seems to be associated with a moderate and transitory inflammatory response, while insufficient or exacerbated responses seems to have a detrimental influence in the healing outcome. In this context, we performed a comparative analysis of mice strains genetically selected for maximum (AIRmax) or minimum (AIRmin) acute inflammatory response to address the influence of inflammation genes in alveolar bone healing outcome. Experimental groups comprised 8-week-old male or female AIRmax and AIRmin submitted to extraction of upper right incisor, and evaluated at 0, 3, 7, 14 and 21?days after upper incision extraction by micro-computed tomography (µCT), histomorphometry, birefringence, immunohistochemistry and molecular (PCRArray) analysis. Overall, the results demonstrate a similar successful bone healing outcome at the endpoint was evidenced in both AIRmin and AIRmax strains. The histormophometric analysis reveal a slight but significant decrease in blood clot and inflammatory cells density, as well a delay in the bone formation in AIRmax strain in the early times, associated with a decreased expression of BMP2, BMP4, BMP7, TGFb1, RUNX2, and ALP. The evaluation of inflammatory cells nature reveals increased GR1+ cells counts in AIRmax strain at 3d, associated with increased levels of neutrophil chemoattractants such as CXCL1 and CXCL2, and its receptor CXCR1, while F4/80+ cell prevails in AIRmin strain at 7d. Also, our results demonstrate a relative predominance of M2 macrophages in AIRmin strain, associated with an increased expression of ARG1, IL10, TGFb, while M1 macrophages prevail in AIRmax, which parallel with increased IL-1B, IL-6 and TNF expression. At late repair stage, AIRmax presents evidences of increased bone remodeling, characterized by increased density of blood vessels and osteoclasts in parallel with decreased bone matrix density, as well increased levels of MMPs, osteoclastogenic and osteocyte markers. In the view of contrasting inflammatory and healing phenotypes of AIRmin and AIRmax strains in other models, the unpredicted phenotype observed suggests the existence of specific QTLs (Quantitative trait loci) responsible for the regulation 'sterile' inflammation and bone healing events. Despite the similar endpoint healing, AIRmax strain delayed repair was associated with increased presence of neutrophils and M1 macrophages, supporting the association of M2 cells with faster bone healing. Further studies are required to clarify the elements responsible for the regulation of inflammatory events at bone healing sites, as well the determinants of bone healing outcome.(AU)


Asunto(s)
Animales , Osteítis/inmunología , Ratones/genética
7.
J Leukoc Biol ; 105(3): 609-619, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30548981

RESUMEN

TBX21-1993T/C (rs4794067) polymorphism increases the transcriptional activity of the Tbx21, essential for interferon gamma (IFNg) transcription, but its functional impact on development Th1- response in vivo remains unclear, as well its potential influence over inflammatory osteolytic conditions, such as periapical lesions. Therefore, this study comprises a case-control and functional investigation of Tbx21 genetic variations impact on Th1 response in vivo and in vitro, and its impact on periapical lesions risk and outcome, performed with a population of healthy controls (H; N = 283) and patients presenting periapical lesions (L; N = 188) or deep caries (DC; N = 152). TBX21-1993T/C genotyping demonstrated that the polymorphic allele C, as well TC/TC+CC genotypes, was significantly less frequent in the L patients compared to H and DC groups. Additionally, gene expression analysis demonstrates that T-cell-specific T-box transcription factor (Tbet) and IFNg transcripts levels were downregulated whereas IL-17 levels were upregulated in the TBX21-1993 C carriers (TC/TC+CC) in comparison with the TT group. Also, while TT and TC+CC genotypes are equally prevalent in the lesions presenting low IFN/IL17 ratio, a significant decrease in polymorphic TC+CC genotypes was observed in lesions presenting intermediate and high IFN/IL17 ratio. In vitro experiments confirmed the predisposition to Th1 polarization associated with TBX21-1993, since PBMC CD4 T cells from T allele carriers produce higher IFNg levels upon CD3/CD28 stimulation than the C group, in both standard/neutral and Th1-polarizing culture conditions. In conclusion, the TBX21-1993 T allele and TC/CC genotypes predispose to Th1-type immune response development in vitro, influence immune response polarization in vivo, and consequently account for the risk for apical periodontitis development.


Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedades Periapicales/genética , Polimorfismo de Nucleótido Simple/genética , Proteínas de Dominio T Box/genética , Células TH1/metabolismo , Células Th17/metabolismo , Adolescente , Adulto , Linfocitos T CD4-Positivos/inmunología , Femenino , Regulación de la Expresión Génica , Humanos , Interferón gamma/metabolismo , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Riesgo , Adulto Joven
8.
Cytokine ; 114: 47-60, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30584949

RESUMEN

The exact role of inflammatory immune response in bone healing process is still unclear, but the success of the alveolar bone healing process seems to be associated with a moderate and transitory inflammatory response, while insufficient or exacerbated responses seems to have a detrimental influence in the healing outcome. In this context, we performed a comparative analysis of mice strains genetically selected for maximum (AIRmax) or minimum (AIRmin) acute inflammatory response to address the influence of inflammation genes in alveolar bone healing outcome. Experimental groups comprised 8-week-old male or female AIRmax and AIRmin submitted to extraction of upper right incisor, and evaluated at 0, 3, 7, 14 and 21 days after upper incision extraction by micro-computed tomography (µCT), histomorphometry, birefringence, immunohistochemistry and molecular (PCRArray) analysis. Overall, the results demonstrate a similar successful bone healing outcome at the endpoint was evidenced in both AIRmin and AIRmax strains. The histormophometric analysis reveal a slight but significant decrease in blood clot and inflammatory cells density, as well a delay in the bone formation in AIRmax strain in the early times, associated with a decreased expression of BMP2, BMP4, BMP7, TGFb1, RUNX2, and ALP. The evaluation of inflammatory cells nature reveals increased GR1+ cells counts in AIRmax strain at 3d, associated with increased levels of neutrophil chemoattractants such as CXCL1 and CXCL2, and its receptor CXCR1, while F4/80+ cell prevails in AIRmin strain at 7d. Also, our results demonstrate a relative predominance of M2 macrophages in AIRmin strain, associated with an increased expression of ARG1, IL10, TGFb, while M1 macrophages prevail in AIRmax, which parallel with increased IL-1B, IL-6 and TNF expression. At late repair stage, AIRmax presents evidences of increased bone remodeling, characterized by increased density of blood vessels and osteoclasts in parallel with decreased bone matrix density, as well increased levels of MMPs, osteoclastogenic and osteocyte markers. In the view of contrasting inflammatory and healing phenotypes of AIRmin and AIRmax strains in other models, the unpredicted phenotype observed suggests the existence of specific QTLs (Quantitative trait loci) responsible for the regulation 'sterile' inflammation and bone healing events. Despite the similar endpoint healing, AIRmax strain delayed repair was associated with increased presence of neutrophils and M1 macrophages, supporting the association of M2 cells with faster bone healing. Further studies are required to clarify the elements responsible for the regulation of inflammatory events at bone healing sites, as well the determinants of bone healing outcome.


Asunto(s)
Proceso Alveolar/patología , Inflamación/patología , Cicatrización de Heridas , Proceso Alveolar/diagnóstico por imagen , Animales , Antígenos CD/metabolismo , Birrefringencia , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/patología , Inflamación/diagnóstico por imagen , Ratones , Alveolo Dental/diagnóstico por imagen , Alveolo Dental/patología , Microtomografía por Rayos X
9.
Cytokine ; 114: p. 47-60, 2019.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15943

RESUMEN

The exact role of inflammatory immune response in bone healing process is still unclear, but the success of the alveolar bone healing process seems to be associated with a moderate and transitory inflammatory response, while insufficient or exacerbated responses seems to have a detrimental influence in the healing outcome. In this context, we performed a comparative analysis of mice strains genetically selected for maximum (AIRmax) or minimum (AIRmin) acute inflammatory response to address the influence of inflammation genes in alveolar bone healing outcome. Experimental groups comprised 8-week-old male or female AIRmax and AIRmin submitted to extraction of upper right incisor, and evaluated at 0, 3, 7, 14 and 21?days after upper incision extraction by micro-computed tomography (µCT), histomorphometry, birefringence, immunohistochemistry and molecular (PCRArray) analysis. Overall, the results demonstrate a similar successful bone healing outcome at the endpoint was evidenced in both AIRmin and AIRmax strains. The histormophometric analysis reveal a slight but significant decrease in blood clot and inflammatory cells density, as well a delay in the bone formation in AIRmax strain in the early times, associated with a decreased expression of BMP2, BMP4, BMP7, TGFb1, RUNX2, and ALP. The evaluation of inflammatory cells nature reveals increased GR1+ cells counts in AIRmax strain at 3d, associated with increased levels of neutrophil chemoattractants such as CXCL1 and CXCL2, and its receptor CXCR1, while F4/80+ cell prevails in AIRmin strain at 7d. Also, our results demonstrate a relative predominance of M2 macrophages in AIRmin strain, associated with an increased expression of ARG1, IL10, TGFb, while M1 macrophages prevail in AIRmax, which parallel with increased IL-1B, IL-6 and TNF expression. At late repair stage, AIRmax presents evidences of increased bone remodeling, characterized by increased density of blood vessels and osteoclasts in parallel with decreased bone matrix density, as well increased levels of MMPs, osteoclastogenic and osteocyte markers. In the view of contrasting inflammatory and healing phenotypes of AIRmin and AIRmax strains in other models, the unpredicted phenotype observed suggests the existence of specific QTLs (Quantitative trait loci) responsible for the regulation ‘sterile’ inflammation and bone healing events. Despite the similar endpoint healing, AIRmax strain delayed repair was associated with increased presence of neutrophils and M1 macrophages, supporting the association of M2 cells with faster bone healing. Further studies are required to clarify the elements responsible for the regulation of inflammatory events at bone healing sites, as well the determinants of bone healing outcome.

10.
Cytokine, v. 114, p. 47-60, fev. 2019
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2722

RESUMEN

The exact role of inflammatory immune response in bone healing process is still unclear, but the success of the alveolar bone healing process seems to be associated with a moderate and transitory inflammatory response, while insufficient or exacerbated responses seems to have a detrimental influence in the healing outcome. In this context, we performed a comparative analysis of mice strains genetically selected for maximum (AIRmax) or minimum (AIRmin) acute inflammatory response to address the influence of inflammation genes in alveolar bone healing outcome. Experimental groups comprised 8-week-old male or female AIRmax and AIRmin submitted to extraction of upper right incisor, and evaluated at 0, 3, 7, 14 and 21?days after upper incision extraction by micro-computed tomography (µCT), histomorphometry, birefringence, immunohistochemistry and molecular (PCRArray) analysis. Overall, the results demonstrate a similar successful bone healing outcome at the endpoint was evidenced in both AIRmin and AIRmax strains. The histormophometric analysis reveal a slight but significant decrease in blood clot and inflammatory cells density, as well a delay in the bone formation in AIRmax strain in the early times, associated with a decreased expression of BMP2, BMP4, BMP7, TGFb1, RUNX2, and ALP. The evaluation of inflammatory cells nature reveals increased GR1+ cells counts in AIRmax strain at 3d, associated with increased levels of neutrophil chemoattractants such as CXCL1 and CXCL2, and its receptor CXCR1, while F4/80+ cell prevails in AIRmin strain at 7d. Also, our results demonstrate a relative predominance of M2 macrophages in AIRmin strain, associated with an increased expression of ARG1, IL10, TGFb, while M1 macrophages prevail in AIRmax, which parallel with increased IL-1B, IL-6 and TNF expression. At late repair stage, AIRmax presents evidences of increased bone remodeling, characterized by increased density of blood vessels and osteoclasts in parallel with decreased bone matrix density, as well increased levels of MMPs, osteoclastogenic and osteocyte markers. In the view of contrasting inflammatory and healing phenotypes of AIRmin and AIRmax strains in other models, the unpredicted phenotype observed suggests the existence of specific QTLs (Quantitative trait loci) responsible for the regulation ‘sterile’ inflammation and bone healing events. Despite the similar endpoint healing, AIRmax strain delayed repair was associated with increased presence of neutrophils and M1 macrophages, supporting the association of M2 cells with faster bone healing. Further studies are required to clarify the elements responsible for the regulation of inflammatory events at bone healing sites, as well the determinants of bone healing outcome.

11.
Front Immunol ; 9: 1804, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30147688

RESUMEN

Bone healing depends of a transient inflammatory response, involving selective migration of leukocytes under the control of chemokine system. CCR2 has been regarded as an essential receptor for macrophage recruitment to inflammation and healing sites, but its role in the intramembranous bone healing on craniofacial region remains unknown. Therefore, we investigated the role of CCR2 on F4/80+ cells migration and its consequences to the intramembranous healing outcome. C57BL/6 wild-type (WT) and CCR2KO mice were subjected to upper right incisor extraction, followed by micro-computed tomography, histological, immunological, and molecular analysis along experimental periods. CCR2 was associated with F4/80+ cells influx to the intramembranous bone healing in WT mice, and CCR2+ cells presented a kinetics similar to F4/80+ and CCR5+ cells. By contrast, F4/80+ and CCR5+ cells were significantly reduced in CCR2KO mice. The absence of CCR2 did not cause major microscopic changes in healing parameters, while molecular analysis demonstrated differential genes expression of several molecules between CCR2KO and WT mice. The mRNA expression of TGFB1, RUNX2, and mesenchymal stem cells markers (CXCL12, CD106, OCT4, NANOG, and CD146) was decreased in CCR2KO mice, while IL6, CXCR1, RANKL, and ECM markers (MMP1, 2, 9, and Col1a2) were significantly increased in different periods. Finally, immunofluorescence and FACS revealed that F4/80+ cells are positive for both CCR2 and CCR5, suggesting that CCR5 may account for the remaining migration of the F4/80+ cells in CCR2KO mice. In summary, these results indicate that CCR2+ cells play a primary role in F4/80+ cells migration along healing in intramembranous bones, but its deficiency does not critically impact healing outcome.


Asunto(s)
Maxilar/metabolismo , Receptores CCR2/genética , Cicatrización de Heridas , Animales , Biomarcadores , Movimiento Celular , Modelos Animales de Enfermedad , Inmunohistoquímica , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Maxilar/diagnóstico por imagen , Maxilar/patología , Ratones , Ratones Noqueados , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/patología , Receptores CCR2/metabolismo , Cicatrización de Heridas/genética , Microtomografía por Rayos X
12.
J Immunol Res ; 2017: 6257958, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28321419

RESUMEN

Experimental autoimmune encephalomyelitis (EAE) is a demyelinating pathology of the central nervous system (CNS) used as a model to study multiple sclerosis immunopathology. EAE has also been extensively employed to evaluate potentially therapeutic schemes. Considering the presence of an immune response directed to heat shock proteins (hsps) in autoimmune diseases and the immunoregulatory potential of these molecules, we evaluated the effect of a previous immunization with a genetic vaccine containing the mycobacterial hsp65 gene on EAE development. C57BL/6 mice were immunized with 4 pVAXhsp65 doses and 14 days later were submitted to EAE induction by immunization with myelin oligodendrocyte glycoprotein (MOG35-55) emulsified in Complete Freund's Adjuvant. Vaccinated mice presented significant lower clinical scores and lost less body weight. MOG35-55 immunization also determined less inflammation in lumbar spinal cord but did not change CD4+CD25+Foxp3+ T cells frequency in spleen and CNS. Infiltrating cells from the CNS stimulated with rhsp65 produced significantly higher levels of IL-10. These results suggest that the ability of pVAXhsp65 vaccination to control EAE development is associated with IL-10 induction.


Asunto(s)
Proteínas Bacterianas/genética , Chaperonina 60/genética , Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Mielitis/inmunología , Vacunas de ADN/inmunología , Animales , Clonación Molecular , Encefalomielitis Autoinmune Experimental/prevención & control , Femenino , Factores de Transcripción Forkhead/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/prevención & control , Glicoproteína Mielina-Oligodendrócito/inmunología , Mielitis/prevención & control , Fragmentos de Péptidos/inmunología , Linfocitos T Reguladores/inmunología , Vacunación
13.
Clin Rev Allergy Immunol ; 52(3): 373-388, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27484684

RESUMEN

Vitamin D (VitD) is a hormone primarily synthesized in human skin under the stimulation of ultraviolet radiation. Beyond its endocrine role in bone metabolism, VitD is endowed with remarkable immunomodulatory properties. The effects of VitD on the immune system include the enhancement of microbicidal ability of monocytes/macrophages and the down-modulation of inflammatory cytokines produced by T lymphocytes. VitD deficiency is involved in many health problems, including immune-mediated diseases such as autoimmune disorders. Rheumatoid arthritis (RA) is a chronic inflammatory systemic autoimmune disease that compromises the joints, causing cartilage destruction and bone erosion. RA treatment usually consists of combined therapies that generally suppress the entire immune response leading to increased susceptibility to infections. This review describes the main effects of VitD on innate and adaptive immune system and also VitD status in inflammatory rheumatic diseases such as RA. Despite some controversies, the majority of reports reinforce the idea that lower VitD levels correlate with more severe clinical manifestations in RA and other rheumatic diseases. Therefore, supplementation with VitD to achieve normal serum levels is worthwhile as an aforethought. Original data concerning the potential applicability of 1,25-dihydroxyvitamin D3 (VitD3), the active form of vitamin D, as a tolerogenic adjuvant are also included. In this sense, the effect of VitD3 associated with proteoglycan (PG), which is a specific cartilage antigen, was tested in the course of experimental arthritis. This association significantly lowered clinical scores and local histopathological alterations. Even though local analysis of T cell subsets and cytokine production did not reveal any difference between the experimental groups, VitD3+PG association significantly reduced cytokine production by spleen cells. These results suggest that VitD3 played a role as a tolerogenic adjuvant by down-modulating the course of experimental RA. Considering this tolerogenic effect of VitD3+PG association, further investigations will reveal its plausible use in human RA.


Asunto(s)
Antiinflamatorios/metabolismo , Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Deficiencia de Vitamina D/inmunología , Vitamina D/metabolismo , Inmunidad Adaptativa , Animales , Artritis Experimental/terapia , Artritis Reumatoide/terapia , Autoinmunidad , Cartílago/efectos de los fármacos , Cartílago/patología , Humanos , Tolerancia Inmunológica , Inmunidad Innata , Inmunomodulación , Inflamación , Proteoglicanos/metabolismo , Vitamina D/uso terapéutico , Deficiencia de Vitamina D/terapia
14.
J Immunol Res ; 2016: 6765134, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27294161

RESUMEN

This study was undertaken to evaluate the prophylactic potential of proteoglycan (PG) administration in experimental arthritis. Female BALB/c retired breeder mice received two (2xPG50 and 2xPG100 groups) or three (3xPG50 group) intraperitoneal doses of bovine PG (50 µg or 100 µg) every three days. A week later the animals were submitted to arthritis induction by immunization with three i.p. doses of bovine PG associated with dimethyldioctadecylammonium bromide adjuvant at intervals of 21 days. Disease severity was daily assessed after the third dose by score evaluation. The 3xPG50 group showed significant reduction in prevalence and clinical scores. This protective effect was associated with lower production of IFN-γ and IL-17 and increased production of IL-5 and IL-10 by spleen cells restimulated in vitro with PG. Even though previous PG administration restrained dendritic cells maturation this procedure did not alter the frequency of regulatory Foxp3(+) T cells. Lower TNF-α and IL-6 levels and higher expression of ROR-γ and GATA-3 were detected in the paws of protected animals. A delayed-type hypersensitivity reaction confirmed specific tolerance induction. Taken together, these results indicate that previous PG inoculation determines a specific tolerogenic effect that is able to decrease severity of subsequently induced arthritis.


Asunto(s)
Artritis Experimental/etiología , Artritis Experimental/prevención & control , Sustancias Protectoras/administración & dosificación , Proteoglicanos/administración & dosificación , Animales , Artritis Experimental/patología , Diferenciación Celular , Citocinas/metabolismo , Células Dendríticas/citología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos BALB C , Índice de Severidad de la Enfermedad , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factores de Transcripción/metabolismo
15.
Cell Microbiol ; 18(7): 998-1008, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26695535

RESUMEN

Staphylococcus aureus is the most common agent of septic arthritis (SA) that is a severe, rapidly progressive and erosive disease. In this work we investigated the clinical, histopathological and immunological characteristics of the SA triggered by an enterotoxin C producer S. aureus strain. The effect of a ß-lactamic antibiotic over disease evolution and cytokine production was also evaluated. After confirmation that ATCC 19095 SEC(+) strain preserved its ability to produce enterotoxin C, this bacteria was used to infect C57BL/6 male mice. Body weight, clinical score and disease prevalence were daily evaluated during 14 days. Cytokine production by splenocytes, cytokine mRNA expression in arthritic lesions, transcription factors mRNA expression in inguinal lymph nodes and histopathological analysis were performed 7 and 14 days after infection. ATCC 19095 SEC(+) strain caused a severe arthritis characterized by weight loss, high clinical scores and a 100% disease prevalence. Histopathological analysis revealed inflammation, pannus formation and bone erosion. Arthritis aggravation was associated with elevated production of pro-inflammatory cytokines, higher local mRNA expression of these cytokines and also higher mRNA expression of T-bet, ROR-γ and GATA-3. Disease control by cloxacillin was associated with decreased production of pro-inflammatory cytokines but not of IL-10. These findings indicate that the ATCC 19095 SEC(+) strain is able to initiate a severe septic arthritis in mice associated with elevated cytokine production that can be, however, controlled by cloxacillin.


Asunto(s)
Antibacterianos/farmacología , Artritis Infecciosa/tratamiento farmacológico , Cloxacilina/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/patogenicidad , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/microbiología , Artritis Experimental/patología , Artritis Infecciosa/inmunología , Artritis Infecciosa/microbiología , Artritis Infecciosa/patología , Citocinas/genética , Citocinas/metabolismo , Enterotoxinas/metabolismo , Masculino , Ratones Endogámicos C57BL , Staphylococcus aureus/metabolismo , Factores de Transcripción/genética
16.
PLoS One ; 10(5): e0128021, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26023920

RESUMEN

Bone tissue has a significant potential for healing, which involves a significant the interplay between bone and immune cells. While fracture healing represents a useful model to investigate endochondral bone healing, intramembranous bone healing models are yet to be developed and characterized. In this study, a micro-computed tomography, histomorphometric and molecular (RealTimePCRarray) characterization of post tooth-extraction alveolar bone healing was performed on C57Bl/6 WT mice. After the initial clot dominance (0 h), the development of a provisional immature granulation tissue is evident (7 d), characterized by marked cell proliferation, angiogenesis and inflammatory cells infiltration; associated with peaks of growth factors (BMP-2-4-7,TGFß1,VEGFa), cytokines (TNFα, IL-10), chemokines & receptors (CXCL12, CCL25, CCR5, CXCR4), matrix (Col1a1-2, ITGA4, VTN, MMP1a) and MSCs (CD105, CD106, OCT4, NANOG, CD34, CD146) markers expression. Granulation tissue is sequentially replaced by more mature connective tissue (14 d), characterized by inflammatory infiltrate reduction along the increased bone formation, marked expression of matrix remodeling enzymes (MMP-2-9), bone formation/maturation (RUNX2, ALP, DMP1, PHEX, SOST) markers, and chemokines & receptors associated with healing (CCL2, CCL17, CCR2). No evidences of cartilage cells or tissue were observed, strengthening the intramembranous nature of bone healing. Bone microarchitecture analysis supports the evolving healing, with total tissue and bone volumes as trabecular number and thickness showing a progressive increase over time. The extraction socket healing process is considered complete (21 d) when the dental socket is filled by trabeculae bone with well-defined medullary canals; it being the expression of mature bone markers prevalent at this period. Our data confirms the intramembranous bone healing nature of the model used, revealing parallels between the gene expression profile and the histomorphometric events and the potential participation of MCSs and immune cells in the healing process, supporting the forthcoming application of the model for the better understanding of the bone healing process.


Asunto(s)
Proceso Alveolar/fisiología , Expresión Génica , Extracción Dental , Cicatrización de Heridas , Proceso Alveolar/patología , Proceso Alveolar/cirugía , Animales , Inmunohistoquímica/métodos , Masculino , Ratones Endogámicos C57BL , Osteogénesis/genética , Microtomografía por Rayos X
17.
Virulence ; 6(3): 293-304, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25832120

RESUMEN

Th1-polarized host response, mediated by IFN-γ, has been associated with increased severity of periodontal disease as well as control of periodontal infection. The functional polymorphism TBX21-1993T/C (rs4794067) increases the transcriptional activity of the TBX21 gene (essential for Th1 polarization) resulting in a predisposition to a Th-1 biased immune response. Thus, we conducted a case-control study, including a population of healthy controls (H, n = 218), chronic periodontitis (CP, n = 197), and chronic gingivitis patients (CG, n = 193), to investigate if genetic variations in TBX21 could impact the development of Th1 responses, and consequently influence the pattern of bacterial infection and periodontitis outcome. We observed that the polymorphic allele T was significantly enriched in the CP patients compared to CG subjects, while the H controls demonstrated and intermediate genotype. Also, investigating the putative functionality TBX21-1993T/C in the modulation of local response, we observed that the transcripts levels of T-bet, but not of IFN-γ, were upregulated in homozygote and heterozygote polymorphic subjects. In addition, TBX21-1993T/C did not influence the pattern of bacterial infection or the clinical parameters of disease severity, being the presence/absence of red complex bacteria the main factor associated with the disease status and the subrogate variable probing depth (PD) in the logistic regression analysis.


Asunto(s)
Periodontitis Crónica/genética , Predisposición Genética a la Enfermedad , Interferón gamma/genética , Polimorfismo de Nucleótido Simple , Proteínas de Dominio T Box/genética , Infecciones Bacterianas/microbiología , Carga Bacteriana , Estudios de Casos y Controles , Periodontitis Crónica/microbiología , Femenino , Genotipo , Gingivitis/genética , Heterocigoto , Homocigoto , Humanos , Interferón gamma/metabolismo , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas , Proteínas de Dominio T Box/metabolismo , Regulación hacia Arriba
18.
Biomed Res Int ; 2014: 148594, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24971313

RESUMEN

Rheumatoid arthritis (RA) is the most common systemic autoimmune disease. It affects mainly the joints, causing synovitis, cartilage destruction, and bone erosion. Many experimental models are used to study the mechanisms involved in immunopathogenesis and new therapies for this disease. Proteoglycan-induced arthritis (PGIA) is a widely used model based on the cross-reactivity of injected foreign (usually human) PG and mice self-PG. Considering the complexity of the extraction and purification of human PG, in this study we evaluated the arthritogenicity of bovine PG that is commercially available. Bovine PG was highly arthritogenic, triggering 100% incidence of arthritis in female BALB/c retired breeder mice. Animals immunized with bovine PG presented clinical symptoms and histopathological features similar to human RA and other experimental models. Moreover, bovine PG immunization determined higher levels of proinflammatory and anti-inflammatory cytokines in arthritic mice compared to healthy ones. As expected, only the arthritic group produced IgG1 and IgG2a antibodies against PG. Thus, commercial bovine PG can be used as an alternative antigenic source to PGIA for the study of many RA aspects, including the immunopathogenesis of the disease and also the development of new therapies.


Asunto(s)
Artritis Experimental/inducido químicamente , Artritis Reumatoide/inducido químicamente , Inmunoglobulina G/inmunología , Proteoglicanos/farmacología , Animales , Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Bovinos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C
19.
Artículo en Inglés | MEDLINE | ID: mdl-24822058

RESUMEN

Septic arthritis is an inflammatory disease of the joints that is started by an infection whose most common agent is Staphylococcus aureus. In this review we discuss some of the most arthritogenic bacterial factors and the contribution of innate and specific immune mechanisms to joint destruction. Special emphasis is given to the induction of experimental arthritis by S. aureus in mice. The improvement of therapy by association of antibiotics with down-modulation of immunity is also included.

20.
Artículo en Inglés | LILACS | ID: lil-724667

RESUMEN

Septic arthritis is an inflammatory disease of the joints that is started by an infection whose most common agent is Staphylococcus aureus. In this review we discuss some of the most arthritogenic bacterial factors and the contribution of innate and specific immune mechanisms to joint destruction. Special emphasis is given to the induction of experimental arthritis by S. aureus in mice. The improvement of therapy by association of antibiotics with down-modulation of immunity is also included.


Asunto(s)
Animales , Artritis/patología , Ratas , Staphylococcus/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...