Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 352, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519601

RESUMEN

Many biological surfaces have hairs, known as trichomes in plants. Here, the wettability and macro- and micro-scale features of olive leaves are analyzed. The upper leaf side has few trichomes, while the lower side has a high trichome density. By combining different techniques including electron and atomic force microscopy, trichome surfaces are found to be chemically (hydrophilic-hydrophobic) heterogeneous at the nano-scale. Both olive leaf surfaces are wettable by water, having a high water contact angle hysteresis and great drop adhesion. The ultra-structural pattern observed for epidermal pavement cells differs from the reticulate cuticle structure of trichomes which shows that leaf surface areas may be substantially different despite being located nearby. Our study provides evidence for the nano-scale chemical heterogeneity of a trichome which may influence the functional properties of biological surfaces, such as water and solute permeability or water capture as discussed here for plants.


Asunto(s)
Olea , Tricomas , Hojas de la Planta/química , Agua
2.
Chem Mater ; 35(9): 3522-3531, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37181669

RESUMEN

Nanoparticles (NPs) of conjugated polymers in intimate contact with sheets of graphene oxide (GO) constitute a promising class of water-dispersible nanohybrid materials of increased interest for the design of sustainable and improved optoelectronic thin-film devices, revealing properties exclusively pre-established upon their liquid-phase synthesis. In this context, we report for the first time the preparation of a P3HTNPs-GO nanohybrid employing a miniemulsion synthesis approach, whereby GO sheets dispersed in the aqueous phase serve as a surfactant. We show that this process uniquely favors a quinoid-like conformation of the P3HT chains of the resulting NPs well located onto individual GO sheets. The accompanied change in the electronic behavior of these P3HTNPs, consistently confirmed by the photoluminescence and Raman response of the hybrid in the liquid and solid states, respectively, as well as by the properties of the surface potential of isolated individual P3HTNPs-GO nano-objects, facilitates unprecedented charge transfer interactions between the two constituents. While the electrochemical performance of nanohybrid films is featured by fast charge transfer processes, compared to those taking place in pure P3HTNPs films, the loss of electrochromic effects in P3HTNPs-GO films additionally indicates the unusual suppression of polaronic charge transport processes typically encountered in P3HT. Thus, the established interface interactions in the P3HTNPs-GO hybrid enable a direct and highly efficient charge extraction channel via GO sheets. These findings are of relevance for the sustainable design of novel high-performance optoelectronic device structures based on water-dispersible conjugated polymer nanoparticles.

3.
Materials (Basel) ; 15(3)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35161156

RESUMEN

Conductive polymers have fundamental relevance as well as novel technological applications in the organic optoelectronics field. Their photophysical and transport properties strongly depend on the molecular arrangement, and nanoscale characterization is needed to fully understand the optoelectronic processes taking place in organic devices. In this work, we study the electrostatic properties of poly-3-octylthiophene isolated structures: disordered low-packed polymer chains and crystalline layered lamellar assemblies. We characterize the electronic ground state using Kelvin probe microscopy. This allows us to resolve a rich variety of surface potential regions that emerge over the different polymer structures. These SP regions are correlated with different molecular aggregates.

4.
ACS Mater Lett ; 3(12): 1826-1831, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34901872

RESUMEN

Graphene oxide (GO) is widely used as a component in thin film optoelectronic device structures for practical reasons because its electronic and optical properties can be controlled. Progress critically depends on elucidating the nanoscale electronic structure of GO. However, direct experimental access is challenging because of its disordered and nonconductive character. Here, we quantitatively mapped the nanoscopic charge distribution and charge dynamics of an individual GO sheet by using Kelvin probe force microscopy (KPFM). Charge domains are identified, presenting important charge interactions below distances of 20 nm. Charge dynamics with very long relaxation times of at least several hours and a logarithmic decay of the time correlation function are in excellent agreement with Monte Carlo simulations, revealing an universal hopping transport mechanism best described by Efros-Shklovskii's law.

5.
ACS Appl Mater Interfaces ; 13(42): 50531-50538, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34641675

RESUMEN

We present a study of the effect of gold nanoparticles (Au NPs) on TiO2 on charge generation and trapping during illumination with photons of energy larger than the substrate band gap. We used a novel characterization technique, photoassisted Kelvin probe force microscopy, to study the process at the single Au NP level. We found that the photoinduced electron transfer from TiO2 to the Au NP increases logarithmically with light intensity due to the combined contribution of electron-hole pair generation in the space charge region in the TiO2-air interface and in the metal-semiconductor junction. Our measurements on single particles provide direct evidence for electron trapping that hinders electron-hole recombination, a key factor in the enhancement of photo(electro)catalytic activity.

6.
J Microsc ; 276(1): 21-26, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31520532

RESUMEN

Computational electrodynamics modelling plays an important role in understanding and designing new photonic devices. The results offered by these simulations are usually close-range field distributions or angular power emission plots. We describe a procedure to compute the optical microscopy image from simulated far-field scattering data using three-dimensional discrete Fourier transforms that can be used when the simulation software package do not include proper far-field to optical imaging projection routines. The method is demonstrated comparing simulated images with real images of nanowires obtained with a total internal reflection microscope.


For a number of applications is crucial to compare the optical microscope image of sub-diffraction particles with the numerically simulated image. For this task, we propose to compute a discrete tridimensional Fourier transform of a sectored far-field data derived from finite-elements scattering simulations. The method is demonstrated by comparing synthetic images with experimental images of nanowires obtained with a total internal reflection microscope.

7.
Nanoscale ; 11(23): 11202-11208, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31157807

RESUMEN

The nanoscale aggregate structure of conjugated polymers critically determines the performance of organic thin film optoelectronic devices. Their impact on electronic interface interactions with adjacent layers of graphene, widely reported to improve the device characteristics, yet remains an open issue, which needs to be addressed by an appropriate benchmark system. Here, we prepared discrete ensembles of poly(3-hexylthiophene) nanoparticles and graphene oxide sheets (P3HTNPs-GO) with well-defined aggregate structures of either J- or H-type and imaged their photogenerated charge transfer dynamics across their interface by Kelvin probe force microscopy (KPFM). A distinctive inversion of the sign of the surface potential and surface photovoltage (SPV) demonstrates that J-aggregates are decisive for establishing charge transfer interactions with GO. These enable efficient injection of photogenerated holes from P3HTNPs into GO sheets over a range of tens of nanometers, causing a slow SPV relaxation dynamics, and define their operation as an efficient hole-transport layer (HTL). Conversely, H-type aggregates do not facilitate specific interactions and entrust GO sheets the role of charge-blocking layers (CBLs). The direct effect of the aggregate structure of P3HT on the functional operation of GO as a HTL or CBL thus establishes clear criteria towards the rational design of improved organic optoelectronic devices.

8.
Beilstein J Nanotechnol ; 9: 2925-2935, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30546989

RESUMEN

Under ambient conditions, surfaces are rapidly modified and contaminated by absorbance of molecules and a variety of nanoparticles that drastically change their chemical and physical properties. The atomic force microscope tip-sample system can be considered a model system for investigating a variety of nanoscale phenomena. In the present work we use atomic force microscopy to directly image nanoscale contamination on surfaces, and to characterize this contamination by using multidimensional spectroscopy techniques. By acquisition of spectroscopy data as a function of tip-sample voltage and tip-sample distance, we are able to determine the contact potential, the Hamaker constant and the effective thickness of the dielectric layer within the tip-sample system. All these properties depend strongly on the contamination within the tip-sample system. We propose to access the state of contamination of real surfaces under ambient conditions using advanced atomic force microscopy techniques.

9.
Front Plant Sci ; 9: 625, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868081

RESUMEN

In eukaryotes, the formation of a 5'-cap and 3'-poly(A) dependent protein-protein bridge is required for translation of its mRNAs. In contrast, several plant virus RNA genomes lack both of these mRNA features, but instead have a 3'-CITE (for cap-independent translation enhancer), a RNA element present in their 3'-untranslated region that recruits translation initiation factors and is able to control its cap-independent translation. For several 3'-CITEs, direct RNA-RNA long-distance interactions based on sequence complementarity between the 5'- and 3'-ends are required for efficient translation, as they bring the translation initiation factors bound to the 3'-CITE to the 5'-end. For the carmovirus melon necrotic spot virus (MNSV), a 3'-CITE has been identified, and the presence of its 5'-end in cis has been shown to be required for its activity. Here, we analyze the secondary structure of the 5'-end of the MNSV RNA genome and identify two highly conserved nucleotide sequence stretches that are complementary to the apical loop of its 3'-CITE. In in vivo cap-independent translation assays with mutant constructs, by disrupting and restoring sequence complementarity, we show that the interaction between the 3'-CITE and at least one complementary sequence in the 5'-end is essential for virus RNA translation, although efficient virus translation and multiplication requires both connections. The complementary sequence stretches are invariant in all MNSV isolates, suggesting that the dual 5'-3' RNA:RNA interactions are required for optimal MNSV cap-independent translation and multiplication.

10.
Nanoscale ; 9(8): 2903-2915, 2017 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-28181615

RESUMEN

The present work analyses how the tip-sample interaction signals critically determine the operation of an Atomic Force Microscope (AFM) set-up immersed in liquid. On heterogeneous samples, the conservative tip-sample interaction may vary significantly from point to point - in particular from attractive to repulsive - rendering correct feedback very challenging. Lipid membranes prepared on a mica substrate are analyzed as reference samples which are locally heterogeneous (material contrast). The AFM set-up is operated dynamically at low oscillation amplitude and all available experimental data signals - the normal force, as well as the amplitude and frequency - are recorded simultaneously. From the analysis of how the dissipation (oscillation amplitude) and the conservative interaction (normal force and resonance frequency) vary with the tip-sample distance we conclude that dissipation is the only appropriate feedback source for stable and correct topographic imaging. The normal force and phase then carry information about the sample composition ("chemical contrast"). Dynamic AFM allows imaging in a non-contact regime where essentially no forces are applied, rendering dynamic AFM a truly non-invasive technique.

11.
Nanoscale ; 8(40): 17400-17406, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27714090

RESUMEN

Here we present the Mendeleev-Meyer Force Project which aims at tabulating all materials and substances in a fashion similar to the periodic table. The goal is to group and tabulate substances using nanoscale force footprints rather than atomic number or electronic configuration as in the periodic table. The process is divided into: (1) acquiring nanoscale force data from materials, (2) parameterizing the raw data into standardized input features to generate a library, (3) feeding the standardized library into an algorithm to generate, enhance or exploit a model to identify a material or property. We propose producing databases mimicking the Materials Genome Initiative, the Medical Literature Analysis and Retrieval System Online (MEDLARS) or the PRoteomics IDEntifications database (PRIDE) and making these searchable online via search engines mimicking Pubmed or the PRIDE web interface. A prototype exploiting deep learning algorithms, i.e. multilayer neural networks, is presented.

12.
ACS Appl Mater Interfaces ; 8(26): 16783-90, 2016 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-27303943

RESUMEN

Kelvin probe force microscopy in darkness and under illumination is reported to provide nanoscale-resolved surface photovoltage maps of hybrid materials. In particular, nanoscale charge injection and charge recombination mechanisms occurring in ZnO polycrystalline surfaces functionalized with Protoporphyrin IX (H2PPIX) are analyzed. Local surface potential and surface photovoltage maps not only reveal that upon molecular adsorption the bare ZnO work function increases, but also they allow study of its local dependence. Nanometer-sized regions not correlated with apparent topographic features were identified, presenting values significantly different from the average work function. Depending on the region, the response to the light excitation is different, distinguishing two relaxation processes, one faster than the other. This behavior can be explained in terms of electrons trapped closed to the molecule-semiconductor interface or electrons pushed into the ZnO bulk, respectively. Moreover, the origin of these differences is correlated with the H2PPIX-ZnO bonding and molecules configuration and aggregation. The chenodeoxycholic acid (CDCA) coadsorption leads to a more homogeneous surface potential distribution, confirming the antiaggregate effect of this additive, while the surface photovoltage is mostly dominated by the slow relaxation component. This work reveals the complexity of real device architectures with ill-defined surfaces even in a relatively simple system with only one type of dye molecule and hightlights the importance of nanoscale characterization with appropriate tools.

13.
Sci Rep ; 6: 21647, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26911652

RESUMEN

The surface potential of conducting polymers has been studied with scanning Kelvin probe microscopy. The results show that this technique can become an excellent tool to really 'see' interesting surface charge interaction effects at the nanoscale. The electron glass model, which assumes that charges are localized by the disorder and that interactions between them are relevant, is employed to understand the complex behavior of conducting polymers. At equilibrium, we find surface potential domains with a typical lateral size of 50 nm, basically uncorrelated with the topography and strongly fluctuating in time. These fluctuations are about three times larger than thermal energy. The charge dynamics is characterized by an exponentially broad time distribution. When the conducting polymers are excited with light the surface potential relaxes logarithmically with time, as usually observed in electron glasses. In addition, the relaxation for different illumination times can be scaled within the full aging model.

14.
Bioinformatics ; 31(17): 2918-20, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25931516

RESUMEN

UNLABELLED: Scanning probe microscopy (SPM) is already a relevant tool in biological research at the nanoscale. We present 'Flatten plus', a recent and helpful implementation in the well-known WSxM free software package. 'Flatten plus' allows reducing low-frequency noise in SPM images in a semi-automated way preventing the appearance of typical artifacts associated with such filters. AVAILABILITY AND IMPLEMENTATION: WSxM is a free software implemented in C++ supported on MS Windows, but it can also be run under Mac or Linux using emulators such as Wine or Parallels. WSxM can be downloaded from http://www.wsxmsolutions.com/. CONTACT: ignacio.horcas@wsxmsolutions.com.


Asunto(s)
Investigación Biomédica , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , ADN/química , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía de Sonda de Barrido/métodos , Programas Informáticos , Algoritmos , Proteínas de Ciclo Celular/ultraestructura , Proteínas Cromosómicas no Histona/ultraestructura , ADN/ultraestructura , Humanos , Aumento de la Imagen
15.
Rev Sci Instrum ; 84(4): 046101, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23635235

RESUMEN

In this work we describe two simple and compact submicrometer-precision sample holders that are easily integrated into a Scanning Force Microscopy (SFM) system. The designs are based on a traditional kinematic mounting or on self-adjustment of the sample holder and the upper piece of the piezoelectric scanner. With these sample holders the sample position is automatically recovered to within about 100 nm. The setup allows ex situ manipulation of the sample and SFM imaging of the same region without the aid of an optical microscope, positioning marks, and tedious re-allocation.

16.
Nanotechnology ; 24(18): 185701, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575449

RESUMEN

A method to precisely calibrate the oscillation amplitude in dynamic scanning force microscopy is described. It is shown that the typical electronics used to process the dynamic motion of the cantilever can be adjusted to transfer the thermal noise of the cantilever motion from its resonance frequency to a much lower frequency within the typical bandwidth of the corresponding data acquisition electronics of a scanning force microscopy system. Based on this concept, two procedures for the calibration of the oscillation amplitude are proposed. One is based on a simple calculation of the root mean square deviation measured at the outputs of the electronics used to process the dynamic motion of the cantilever, and the second one is based on analysis of the corresponding spectrum and the calculation of the quality factor, the resonance frequency and the signal strength.We show that the proposed scheme for amplitude calibration using thermal noise is experimentally and theoretically robust, with soft as well as with hard cantilevers. Moreover, it is directly related to well-defined quantities such as the force constant and thermal energy, in contrast to the calibration using amplitude versus distance curves, which requires non-trivial a priori assumptions regarding the amplitude versus distance relation.

17.
Nanoscale Res Lett ; 7: 174, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22397728

RESUMEN

In this study, we show that the correct determination of surface morphology using scanning force microscopy (SFM) imaging and power spectral density (PSD) analysis of the surface roughness is an extremely demanding task that is easily affected by experimental parameters such as scan speed and feedback parameters. We present examples were the measured topography data is significantly influenced by the feedback response of the SFM system and the PSD curves calculated from this experimental data do not correspond to that of the true topography. Instead, either features are "lost" due to low pass filtering or features are "created" due to oscillation of the feedback loop. In order to overcome these serious problems we show that the interaction signal (error signal) can be used not only to quantitatively control but also to significantly improve the quality of the topography raw data used for the PSD analysis. In particular, the calibrated error signal image can be used in combination with the topography image in order to obtain a correct representation of surface morphology ("true" topographic image). From this "true" topographic image a faithful determination of the PSD of surface morphology is possible. The corresponding PSD curve is not affected by the fine-tuning of feedback parameters, and allows for much faster image acquisition speeds without loss of information in the PSD curve.

18.
Nano Lett ; 7(6): 1505-11, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17511510

RESUMEN

In this paper, the electrical transport and mechanical properties of Pt/ZnO Schottky nanocontacts have been studied simultaneously during the formation and rupture of the nanocontacts. By combining multidimensional conducting scanning force spectroscopy with appropriated data processing, the physical relevant parameters (the ideality factor, the Schottky barrier height, and the rupture voltage) are obtained. It has been found that the transport curves strongly depend on the loading force. For loading forces higher than a threshold value, the transport characteristics are similar to those of large-area Schottky contact, while below this threshold deviations from strictly thermionic emission are detected. Above the threshold, stable and reproducible Pt/ZnO nanocontacts with ideality factors of about 2 and Schottky barrier heights of around 0.45 eV have been obtained.


Asunto(s)
Cristalización/métodos , Electroquímica/instrumentación , Microelectrodos , Nanotecnología/instrumentación , Nanotubos/química , Óxido de Zinc/química , Conductividad Eléctrica , Electroquímica/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Nanotecnología/métodos , Nanotubos/ultraestructura , Tamaño de la Partícula , Semiconductores , Propiedades de Superficie
19.
Small ; 3(3): 474-80, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17262869

RESUMEN

In this paper scanning force microscopy is combined with simple but powerful data processing to determine quantitatively, on a sub-micrometer scale, the orientation of surface facets present on crystalline materials. A high-quality scanning force topography image is used to determine an angular histogram of the surface normal at each image point. In addition to the known method for the assignment of Miller indices to the facets appearing on the surface, a quantitative analysis is presented that allows the characterization of the relative population and morphological quality of each of these facets. Two different CdTe thin films are used as model systems to probe the capabilities of this method, which enables further information to be obtained about the thermodynamic stability of particular crystallographic facets. The method, which is referred to as nanogoniometry, will be a powerful tool to study in detail the surface of crystalline materials, particularly thin films, with sub-micrometer resolution.


Asunto(s)
Compuestos de Cadmio/química , Cristalografía/métodos , Ensayo de Materiales/métodos , Membranas Artificiales , Microscopía de Fuerza Atómica/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Telurio/química , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
20.
Phys Rev Lett ; 95(22): 226105, 2005 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-16384242

RESUMEN

The surface electrical properties of ZnO thin films grown along the nonpolar [1120] direction have been investigated by Kelvin probe microscopy on a nanometer scale. Two different charge domains, with a 75 meV work function difference, coexist within the ZnO surface, which is covered by rhombohedral pyramids whose sidewalls are shown to be {1011}-type planes. The presence and relative orientation of the two kinds of charge domains are explained in terms of the atomic arrangement at the {1011} polar surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...