Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 221(10)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36040375

RESUMEN

The GTPase Arl13b participates in ciliary protein transport, but its contribution to intraflagellar transport (IFT), the main motor-based protein shuttle of cilia, remains largely unknown. Chlamydomonas arl13 mutant cilia were characterized by both abnormal reduction and accumulation of select membrane-associated proteins. With respect to the latter, a similar set of proteins including phospholipase D (PLD) also accumulated in BBSome-deficient cilia. IFT and BBSome traffic were apparently normal in arl13. However, transport of PLD, which in control cells moves by BBSome-dependent IFT, was impaired in arl13, causing PLD to accumulate in cilia. ARL13 only rarely and transiently traveled by IFT, indicating that it is not a co-migrating adapter securing PLD to IFT trains. In conclusion, the loss of Chlamydomonas ARL13 impedes BBSome-dependent protein transport, resulting in overlapping biochemical defects in arl13 and bbs mutant cilia.


Asunto(s)
Chlamydomonas , GTP Fosfohidrolasas/metabolismo , Fosfolipasa D , Chlamydomonas/genética , Chlamydomonas/metabolismo , Cilios/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Cinesinas , Proteínas de la Membrana/metabolismo , Fosfolipasa D/metabolismo , Transporte de Proteínas
2.
Methods Enzymol ; 524: 171-94, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23498740

RESUMEN

Intraflagellar transport (IFT) involves the movement of large proteinaceous particles or trains along the length of ciliary and flagellar axonemal microtubules. The particles contain multiple copies of two protein complexes. As isolated from the flagellated model organism, Chlamydomonas reinhardtii, IFT A contains 6 distinct gene products while IFT B contains at least 13 distinct gene products. To better understand the architecture of these two complexes, a multifaceted approach has been employed to identify subcomplexes and specific protein-protein interactions. The high biochemical yields afforded with Chlamydomonas preparations have allowed traditional biochemical approaches including chemical cross-linking and disruption of native complexes, which, in the case of IFT B, have revealed a core subcomplex retaining nine of the B subunits. Complementing these results are molecular approaches including two-hybrid screenings and heterologous expression that have identified specific protein-protein interactions. Lastly, genetic approaches utilizing Chlamydomonas IFT mutants have shown how the loss of specific subunits perturb the complexes and, in the case of IFT A, they have revealed a core subcomplex containing half of the A subunits.


Asunto(s)
Proteínas Algáceas/metabolismo , Proteínas Portadoras/metabolismo , Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , Subunidades de Proteína/metabolismo , Proteínas Algáceas/química , Proteínas Algáceas/genética , Transporte Biológico , Proteínas Portadoras/química , Proteínas Portadoras/genética , Centrifugación por Gradiente de Densidad , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Reactivos de Enlaces Cruzados , Citoplasma/química , Flagelos/química , Flagelos/genética , Inmunoprecipitación , Microtúbulos/química , Mutación , Unión Proteica , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Sacarosa , Técnicas del Sistema de Dos Híbridos
3.
Cytoskeleton (Hoboken) ; 69(1): 33-48, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22076686

RESUMEN

Cilia and flagella, sensory and motile structures protruding from the cell body, rely on the continuous bidirectional traffic of intraflagellar transport (IFT) particles to ferry flagellar precursors into flagella for assembly. Cells synthesize a large pool of IFT particle proteins in the cell body, but only a small portion engages in active transport within the flagella at any given time. The atypical small G protein Rab-like 5 (RABL5) has been shown to move in an IFT-like manner in the flagella, but its function in ciliogenesis is controversial. In this report, we demonstrate that IFT22, the Chlamydomonas reinhardtii homolog of RABL5, is a bona fide IFT particle complex B subunit. Although the amount of IFT22 remains unaffected by depletion of either complex A or B, depletion of IFT22 leads to a smaller pool of both complex A and B. Strikingly, the smaller cellular pool of IFT particles does not lead to a reduced distribution of IFT particles to flagella. Instead, the amount of IFT particle proteins, including IFT22 itself, increase in the flagella. Moreover, cells over-expressing IFT22 also accumulate IFT particles in their flagella. Taken together, these data indicate that, in C. reinhardtii, IFT22 controls the cellular levels of both complex A and B, thus plays a critical role in determining the cellular availability of IFT particles. In addition, although IFT22 may not directly carry any precursors for flagellar assembly, it controls how many IFT particles participate in ferrying precursors into flagella.


Asunto(s)
Proteínas Portadoras/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cilios/metabolismo , Flagelos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Plantas/metabolismo , Transporte Biológico , Chlamydomonas reinhardtii/genética , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Plantas/genética , Transporte de Proteínas
4.
J Biol Chem ; 287(15): 11689-703, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22170070

RESUMEN

Chlamydomonas reinhardtii intraflagellar transport (IFT) particles can be biochemically resolved into two smaller assemblies, complexes A and B, that contain up to six and 15 protein subunits, respectively. We provide here the proteomic and immunological analyses that verify the identity of all six Chlamydomonas A proteins. Using sucrose density gradient centrifugation and antibody pulldowns, we show that all six A subunits are associated in a 16 S complex in both the cell bodies and flagella. A significant fraction of the cell body IFT43, however, exhibits a much slower sedimentation of ∼2 S and is not associated with the IFT A complex. To identify interactions between the six A proteins, we combined exhaustive yeast-based two-hybrid analysis, heterologous recombinant protein expression in Escherichia coli, and analysis of the newly identified complex A mutants, ift121 and ift122. We show that IFT121 and IFT43 interact directly and provide evidence for additional interactions between IFT121 and IFT139, IFT121 and IFT122, IFT140 and IFT122, and IFT140 and IFT144. The mutant analysis further allows us to propose that a subset of complex A proteins, IFT144/140/122, can form a stable 12 S subcomplex that we refer to as the IFT A core. Based on these results, we propose a model for the spatial arrangement of the six IFT A components.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Transporte Biológico , Chlamydomonas reinhardtii/genética , Escherichia coli , Flagelos/química , Técnicas de Inactivación de Genes , Inmunoprecipitación , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Técnicas del Sistema de Dos Híbridos
5.
Cytoskeleton (Hoboken) ; 68(7): 389-400, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21692193

RESUMEN

The unicellular alga Chlamydomonas can assemble two 10 µm flagella in 1 h from proteins synthesized in the cell body. Targeting and transporting these proteins to the flagella are simplified by preassembly of macromolecular complexes in the cell body. Radial spokes are flagellar complexes that are partially assembled in the cell body before entering the flagella. On the axoneme, radial spokes are "T" shaped structures with a head of five proteins and a stalk of 18 proteins that sediment together at 20S. In the cell body, radial spokes are partially assembled; about half of the radial spoke proteins (RSPs) form a 12S complex. In mutants lacking a single RSP, smaller spoke subassemblies were identified. When extracts from two such mutants were mixed in vitro the 12S complex was assembled from several smaller complexes demonstrating that portions of the stepwise assembly of radial spoke assembly can be carried out in vitro to elucidate the order of spoke assembly in the cell body.


Asunto(s)
Chlamydomonas/metabolismo , Flagelos/metabolismo , Chlamydomonas/ultraestructura , Cilios/metabolismo , Cilios/ultraestructura , Flagelos/ultraestructura , Microscopía Electrónica de Transmisión , Proteínas de Plantas , Proteínas Protozoarias/metabolismo
6.
Curr Biol ; 20(21): R928-31, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-21056833

RESUMEN

A recent study reveals that the large coiled-coil protein CEP290 is an integral component of the transition zone between the cell body and the cilium and functions as a gatekeeper to regulate trafficking of ciliary proteins.


Asunto(s)
Chlamydomonas/metabolismo , Cilios/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de Plantas/fisiología , Transporte de Proteínas/genética , Chlamydomonas/genética , Chlamydomonas/ultraestructura , Cilios/ultraestructura , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Mol Biol Cell ; 21(15): 2696-706, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20534810

RESUMEN

DYF-1 is a highly conserved protein essential for ciliogenesis in several model organisms. In Caenorhabditis elegans, DYF-1 serves as an essential activator for an anterograde motor OSM-3 of intraflagellar transport (IFT), the ciliogenesis-required motility that mediates the transport of flagellar precursors and removal of turnover products. In zebrafish and Tetrahymena DYF-1 influences the cilia tubulin posttranslational modification and may have more ubiquitous function in ciliogenesis than OSM-3. Here we address how DYF-1 biochemically interacts with the IFT machinery by using the model organism Chlamydomonas reinhardtii, in which the anterograde IFT does not depend on OSM-3. Our results show that this protein is a stoichiometric component of the IFT particle complex B and interacts directly with complex B subunit IFT46. In concurrence with the established IFT protein nomenclature, DYF-1 is also named IFT70 after the apparent size of the protein. IFT70/CrDYF-1 is essential for the function of IFT in building the flagellum because the flagella of IFT70/CrDYF-1-depleted cells were greatly shortened. Together, these results demonstrate that IFT70/CrDYF-1 is a canonical subunit of IFT particle complex B and strongly support the hypothesis that the IFT machinery has species- and tissue-specific variations with functional ramifications.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlamydomonas/metabolismo , Flagelos/metabolismo , Proteínas Algáceas/química , Secuencia de Aminoácidos , Axonema/metabolismo , Axonema/ultraestructura , Chlamydomonas/citología , Chlamydomonas/ultraestructura , Secuencia Conservada/genética , Flagelos/ultraestructura , Técnicas de Silenciamiento del Gen , Cinesinas/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/metabolismo
8.
J Biol Chem ; 285(28): 21508-18, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20435895

RESUMEN

Intraflagellar transport (IFT) particles of Chlamydomonas reinhardtii contain two distinct protein complexes, A and B, composed of at least 6 and 15 protein subunits, respectively. As isolated from C. reinhardtii flagella, IFT complex B can be further reduced to a approximately 500-kDa core that contains IFT88, 2x IFT81, 2x IFT74/72, IFT52, IFT46, IFT27, IFT25, and IFT22. In this study, yeast-based two-hybrid analysis was combined with bacterial coexpression to show that three of the core B subunits, IFT88, IFT52, and IFT46, interact directly with each other and, together, are capable of forming a ternary complex. Chemical cross-linking results support the IFT52-IFT88 interaction and provide additional evidence of an association between IFT27 and IFT81. With previous studies showing that IFT81 and IFT74/72 interact to form a (IFT81)(2)(IFT74/72)(2) heterotetramer and that IFT27 and IFT25 form a heterodimer, the architecture of complex B is revealing itself. Last, electroporation of recombinant IFT46 was used to rescue flagellar assembly of a newly identified ift46 mutant and to monitor in vivo localization and movement of the IFT particles.


Asunto(s)
Proteínas Algáceas/metabolismo , Proteínas Portadoras/metabolismo , Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , Regulación de la Expresión Génica , Proteínas Protozoarias/metabolismo , Transporte Biológico , Chlamydomonas reinhardtii/genética , Reactivos de Enlaces Cruzados/química , Electroporación , Modelos Biológicos , Mutagénesis , Fenotipo , Proteínas de Plantas , Plásmidos/metabolismo , Unión Proteica , Proteínas Recombinantes/química , Técnicas del Sistema de Dos Híbridos
9.
Cell ; 137(4): 784-784.e1, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19450523
10.
Methods Cell Biol ; 93: 179-96, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20409818

RESUMEN

Intraflagellar transport (IFT) is characterized by a robust bidirectional movement of large proteinaceous particles along the length of eukaryotic cilia and flagella. Essential for the assembly and function of the organelle, IFT is believed to transport a large array of ciliary components in and out of the organelle. Biochemical analysis of the proteins involved with this transport has been largely dependent on the ability to isolate suitable quantities of intact cilia or flagella. One model organism, Chlamydomonas reinhardtii, has proven to be especially well-suited for such endeavors. Indeed, many of the IFT particle proteins were initially identified through biochemical analysis of green algae. This chapter describes some of the most effective methods for the purification of IFT particle proteins from Chlamydomonas flagella. This chapter also describes complementary approaches where recombinant IFT proteins are generated with affinity tags that allow rapid and specific purification. The recombinant proteins can be used to analyze protein-protein interactions and can be directly delivered to mutant cells to analyze functional domains. Although the techniques described here are focused entirely on Chlamydomonas IFT proteins, the approaches, especially regarding recombinant proteins, should be applicable to the study of IFT machinery in other model organisms.


Asunto(s)
Proteínas Protozoarias/aislamiento & purificación , Animales , Transporte Biológico/fisiología , Centrifugación por Gradiente de Densidad/instrumentación , Centrifugación por Gradiente de Densidad/métodos , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
12.
J Cell Biol ; 183(2): 313-22, 2008 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-18852297

RESUMEN

Formation of flagellar outer dynein arms in Chlamydomonas reinhardtii requires the ODA16 protein at a previously uncharacterized assembly step. Here, we show that dynein extracted from wild-type axonemes can rebind to oda16 axonemes in vitro, and dynein in oda16 cytoplasmic extracts can bind to docking sites on pf28 (oda) axonemes, which is consistent with a role for ODA16 in dynein transport, rather than subunit preassembly or binding site formation. ODA16 localization resembles that seen for intraflagellar transport (IFT) proteins, and flagellar abundance of ODA16 depends on IFT. Yeast two-hybrid analysis with mammalian homologues identified an IFT complex B subunit, IFT46, as a directly interacting partner of ODA16. Interaction between Chlamydomonas ODA16 and IFT46 was confirmed through in vitro pull-down assays and coimmunoprecipitation from flagellar extracts. ODA16 appears to function as a cargo-specific adaptor between IFT particles and outer row dynein needed for efficient dynein transport into the flagellar compartment.


Asunto(s)
Axonema/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Axonema/ultraestructura , Transporte Biológico , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/ultraestructura , Citoplasma/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Unión Proteica , Transporte de Proteínas , Proteínas Protozoarias/química , Técnicas del Sistema de Dos Híbridos
13.
Biochem J ; 404(1): 159-67, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17300223

RESUMEN

The molecular chaperone Hsp (heat-shock protein) 90 is critical for the activity of diverse cellular client proteins. In a current model, client proteins are transferred from Hsp70 to Hsp90 in a process mediated by the co-chaperone Sti1/Hop, which may simultaneously interact with Hsp70 and Hsp90 via separate TPR (tetratricopeptide repeat) domains, but the mechanism and in vivo importance of this function is unclear. In the present study, we used truncated forms of Sti1 to determine the minimal regions required for the Hsp70 and Hsp90 interaction, as well as Sti1 dimerization. We found that both TPR1 and TPR2B contribute to the Hsp70 interaction in vivo and that mutations in both TPR1 and TPR2B were required to disrupt the in vitro interaction of Sti1 with the C-terminus of the Hsp70 Ssa1. The TPR2A domain was required for the Hsp90 interaction in vivo, but the isolated TPR2A domain was not sufficient for the Hsp90 interaction unless combined with the TPR2B domain. However, isolated TPR2A was both necessary and sufficient for purified Sti1 to migrate as a dimer in solution. The DP2 domain, which is essential for in vivo function, was dispensable for the Hsp70 and Hsp90 interaction, as well as Sti1 dimerization. As evidence for the role of Sti1 in mediating the interaction between Hsp70 and Hsp90 in vivo, we identified Sti1 mutants that result in reduced recovery of Hsp70 in Hsp90 complexes. We also identified two Hsp90 mutants that exhibit a reduced Hsp70 interaction, which may help clarify the mechanism of client transfer between the two molecular chaperones.


Asunto(s)
Proteínas Fúngicas/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Sitios de Unión , Cromatografía en Gel , Dimerización , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Plásmidos , Unión Proteica , Proteínas Recombinantes/química
14.
Curr Biol ; 15(19): R798-801, 2005 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-16213810

RESUMEN

Intraflagellar transport is a conserved delivery system that services eukaryotic cilia and flagella. Recent work in the nematode Caenorhabditis elegans has identified proteins required for the functional coordination of intraflagellar transport motors and their cargoes.


Asunto(s)
Caenorhabditis elegans/fisiología , Proteínas Portadoras/metabolismo , Flagelos/fisiología , Modelos Biológicos , Proteínas Motoras Moleculares/metabolismo , Animales , Transporte Biológico/fisiología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Flagelos/metabolismo , Cinesinas/metabolismo , Mutación/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
15.
J Biol Chem ; 280(30): 27688-96, 2005 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-15955805

RESUMEN

Required for the assembly and maintenance of eukaryotic cilia and flagella, intraflagellar transport (IFT) consists of the bidirectional movement of large protein particles between the base and the distal tip of the organelle. Anterograde movement of particles away from the cell body is mediated by kinesin-2, whereas retrograde movement away from the flagellar tip is powered by cytoplasmic dynein 1b/2. IFT particles contain multiple copies of two distinct protein complexes, A and B, which contain at least 6 and 11 protein subunits, respectively. In this study, we have used increased ionic strength to remove four peripheral subunits from the IFT complex B of Chlamydomonas reinhardtii, revealing a 500-kDa core that contains IFT88, IFT81, IFT74/72, IFT52, IFT46, and IFT27. This result demonstrates that the complex B subunits, IFT172, IFT80, IFT57, and IFT20 are not required for the core subunits to stay associated. Chemical cross-linking of the complex B core resulted in multiple IFT81-74/72 products. Yeast-based two-hybrid and three-hybrid analyses were then used to show that IFT81 and IFT74/72 directly interact to form a higher order oligomer consistent with a tetrameric complex. Similar analysis of the vertebrate IFT81 and IFT74/72 homologues revealed that this interaction has been evolutionarily conserved. We hypothesize that these proteins form a tetrameric complex, (IFT81)2(IFT74/72)2, which serves as a scaffold for the formation of the intact IFT complex B.


Asunto(s)
Proteínas Portadoras/fisiología , Flagelos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/fisiología , Animales , Northern Blotting , Proteínas Portadoras/metabolismo , Chlamydomonas reinhardtii/metabolismo , Clonación Molecular , Reactivos de Enlaces Cruzados/farmacología , Citoplasma/metabolismo , ADN Complementario/metabolismo , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Modelos Genéticos , Unión Proteica , Estructura Terciaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Temperatura , Tripsina/farmacología , Técnicas del Sistema de Dos Híbridos
16.
Mol Biol Cell ; 16(8): 3810-20, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15944218

RESUMEN

The Chlamydomonas anterograde intraflagellar transport motor, kinesin-2, is isolated as a heterotrimeric complex containing two motor subunits and a nonmotor subunit known as kinesin-associated polypeptide or KAP. One of the two motor subunits is encoded by the FLA10 gene. The sequence of the second motor subunit was obtained by mass spectrometry and sequencing. It shows 46.9% identity with the Fla10 motor subunit and the gene maps to linkage group XII/XIII near RPL9. The temperature-sensitive flagellar assembly mutants fla1 and fla8 are linked to this kinesin-2 motor subunit. In each strain, a unique single point mutation gives rise to a unique single amino acid substitution within the motor domain. The fla8 strain is named fla8-1 and the fla1 strain is named fla8-2. The fla8 and fla10 alleles show a chromosome loss phenotype. To analyze this chromosome loss phenotype, intragenic revertants of fla8-1, fla8-2, and fla10-14 were generated. The analysis of the mutants and the revertants demonstrates the importance of a pocket in the amino terminus of these motor subunits for both motor activity and for a novel, dominant effect on the fidelity of chromosome segregation.


Asunto(s)
Chlamydomonas/genética , Chlamydomonas/metabolismo , Cromosomas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Células Cultivadas , Chlamydomonas/citología , Cromosomas/genética , Cinesinas/química , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/efectos de la radiación , Datos de Secuencia Molecular , Mutación/genética , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Protozoarias/genética , Alineación de Secuencia
17.
Curr Biol ; 15(3): 262-6, 2005 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-15694311

RESUMEN

The transport of flagellar precursors and removal of turnover products from the flagellar tip is mediated by intraflagellar transport (IFT) , which is essential for both flagellar assembly and maintenance . Large groups of IFT particles are moved from the flagellar base to the tip by kinesin-2, and smaller groups are returned to the base by cytoplasmic dynein 1b. The IFT particles are composed of two protein complexes, A and B, comprising approximately 16-18 polypeptides. How cargo is unloaded from IFT particles, turnover products loaded, and active IFT motors exchanged at the tip is unknown. We previously showed that the Chlamydomonas microtubule end binding protein 1 (CrEB1) localizes to the flagellar tip and is depleted from the tips of the temperature-sensitive (ts) mutant fla11ts . We demonstrate here that FLA11 encodes IFT protein 172, a component of IFT complex B, and show that IFT172 interacts with CrEB1. Because fla11ts cells are defective in IFT particle turnaround at the tip, our results indicate that IFT172 is involved in regulating the transition between anterograde and retrograde IFT at the tip, perhaps by a mechanism involving CrEB1. Therefore, IFT172 is involved in the control of flagellar assembly/disassembly at the tip.


Asunto(s)
Proteínas Portadoras/metabolismo , Chlamydomonas reinhardtii/fisiología , Flagelos/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microtúbulos/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Chlamydomonas reinhardtii/genética , Electroforesis en Gel de Poliacrilamida , Flagelos/genética , Flagelos/ultraestructura , Componentes del Gen , Immunoblotting , Péptidos y Proteínas de Señalización Intracelular/genética , Microscopía Electrónica , Microtúbulos/genética , Datos de Secuencia Molecular , Transporte de Proteínas/fisiología , Secuencias Repetitivas de Ácidos Nucleicos , Alineación de Secuencia
18.
Mol Biol Cell ; 16(3): 1341-54, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15616187

RESUMEN

Intraflagellar transport (IFT) is a bidirectional process required for assembly and maintenance of cilia and flagella. Kinesin-2 is the anterograde IFT motor, and Dhc1b/Dhc2 drives retrograde IFT. To understand how either motor interacts with the IFT particle or how their activities might be coordinated, we characterized a ts mutation in the Chlamydomonas gene encoding KAP, the nonmotor subunit of Kinesin-2. The fla3-1 mutation is an amino acid substitution in a conserved C-terminal domain. fla3-1 strains assemble flagella at 21 degrees C, but cannot maintain them at 33 degrees C. Although the Kinesin-2 complex is present at both 21 and 33 degrees C, the fla3-1 Kinesin-2 complex is not efficiently targeted to or retained in the basal body region or flagella. Video-enhanced DIC microscopy of fla3-1 cells shows that the frequency of anterograde IFT particles is significantly reduced. Anterograde particles move at near wild-type velocities, but appear larger and pause more frequently in fla3-1. Transformation with an epitope-tagged KAP gene rescues all of the fla3-1 defects and results in preferential incorporation of tagged KAP complexes into flagella. KAP is therefore required for the localization of Kinesin-2 at the site of flagellar assembly and the efficient transport of anterograde IFT particles within flagella.


Asunto(s)
Flagelos/fisiología , Cinesinas/biosíntesis , Cinesinas/metabolismo , Cinesinas/fisiología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Transporte Biológico , Southern Blotting , Western Blotting , Centrómero/ultraestructura , Chlamydomonas/metabolismo , Cilios/metabolismo , Clonación Molecular , ADN Complementario/metabolismo , Electroforesis en Gel de Poliacrilamida , Epítopos/química , Ligamiento Genético , Cinesinas/química , Microscopía Fluorescente , Microscopía por Video , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Fenotipo , Estructura Terciaria de Proteína , ARN/química , Homología de Secuencia de Aminoácido , Temperatura , Factores de Tiempo
19.
Development ; 131(16): 4085-93, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15269167

RESUMEN

Polycystic kidney disease (PKD) is a common human genetic illness. It is characterized by the formation of multiple kidney cysts that are thought to result from over-proliferation of epithelial cells. Zebrafish larvae can also develop kidney cysts. In an insertional mutagenesis screen in zebrafish, we identified 12 genes that can cause cysts in the glomerular-tubular region when mutated and we cloned 10 of these genes. Two of these genes, vhnf1 (tcf2) and pkd2, are already associated with human cystic kidney diseases. Recently, defects in primary cilia have been linked to PKD. Strikingly, three out of the 10 genes cloned in this screen are homologues of Chlamydomonas genes that encode components of intraflagellar transport (IFT) particles involved in cilia formation. Mutation in a fourth blocks ciliary assembly by an unknown mechanism. These results provide compelling support for the connection between cilia and cystogenesis. Our results also suggest that lesions in genes involved in cilia formation and function are the predominant cause of cystic kidney disease, and that the genes identified here are excellent candidates for novel human PKD genes.


Asunto(s)
Riñón/metabolismo , Enfermedades Renales Poliquísticas/genética , Pez Cebra/genética , Animales , Cilios/genética , Cilios/metabolismo , Riñón/citología , Riñón/embriología , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación , Enfermedades Renales Poliquísticas/embriología , Enfermedades Renales Poliquísticas/metabolismo , Pez Cebra/metabolismo
20.
J Cell Biol ; 164(2): 255-66, 2004 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-14718520

RESUMEN

Intraflagellar transport (IFT) is the bidirectional movement of multisubunit protein particles along axonemal microtubules and is required for assembly and maintenance of eukaryotic flagella and cilia. One posited role of IFT is to transport flagellar precursors to the flagellar tip for assembly. Here, we examine radial spokes, axonemal subunits consisting of 22 polypeptides, as potential cargo for IFT. Radial spokes were found to be partially assembled in the cell body, before being transported to the flagellar tip by anterograde IFT. Fully assembled radial spokes, detached from axonemal microtubules during flagellar breakdown or turnover, are removed from flagella by retrograde IFT. Interactions between IFT particles, motors, radial spokes, and other axonemal proteins were verified by coimmunoprecipitation of these proteins from the soluble fraction of Chlamydomonas flagella. These studies indicate that one of the main roles of IFT in flagellar assembly and maintenance is to transport axonemal proteins in and out of the flagellum.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , Flagelos/ultraestructura , Proteínas Protozoarias/metabolismo , Animales , Fraccionamiento Celular , Chlamydomonas reinhardtii/ultraestructura , Citoplasma/metabolismo , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA