Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Sci Adv ; 10(18): eadl2991, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38691615

RESUMEN

Amyloid fibrils of tau are increasingly accepted as a cause of neuronal death and brain atrophy in Alzheimer's disease (AD). Diminishing tau aggregation is a promising strategy in the search for efficacious AD therapeutics. Previously, our laboratory designed a six-residue, nonnatural amino acid inhibitor D-TLKIVW peptide (6-DP), which can prevent tau aggregation in vitro. However, it cannot block cell-to-cell transmission of tau aggregation. Here, we find D-TLKIVWC (7-DP), a d-cysteine extension of 6-DP, not only prevents tau aggregation but also fragments tau fibrils extracted from AD brains to neutralize their seeding ability and protect neuronal cells from tau-induced toxicity. To facilitate the transport of 7-DP across the blood-brain barrier, we conjugated it to magnetic nanoparticles (MNPs). The MNPs-DP complex retains the inhibition and fragmentation properties of 7-DP alone. Ten weeks of MNPs-DP treatment appear to reverse neurological deficits in the PS19 mouse model of AD. This work offers a direction for development of therapies to target tau fibrils.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Nanopartículas de Magnetita , Proteínas tau , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Proteínas tau/metabolismo , Proteínas tau/química , Ratones , Humanos , Nanopartículas de Magnetita/química , Amiloide/metabolismo , Amiloide/química , Ratones Transgénicos , Conducta Animal/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Agregación Patológica de Proteínas/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos
2.
Int J Mol Sci ; 23(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35563647

RESUMEN

Fatigue and other deleterious mood alterations resulting from prolonged efforts such as a long work shift can lead to a decrease in vigilance and cognitive performance, increasing the likelihood of errors during the execution of attention-demanding activities such as piloting an aircraft or performing medical procedures. Thus, a method to rapidly and objectively assess the risk for such cognitive fatigue would be of value. The objective of the study was the identification in saliva-borne exosomes of molecular signals associated with changes in mood and fatigue that may increase the risk of reduced cognitive performance. Using integrated multiomics analysis of exosomes from the saliva of medical residents before and after a 12 h work shift, we observed changes in the abundances of several proteins and miRNAs that were associated with various mood states, and specifically fatigue, as determined by a Profile of Mood States questionnaire. The findings herein point to a promising protein biomarker, phosphoglycerate kinase 1 (PGK1), that was associated with fatigue and displayed changes in abundance in saliva, and we suggest a possible biological mechanism whereby the expression of the PGK1 gene is regulated by miR3185 in response to fatigue. Overall, these data suggest that multiomics analysis of salivary exosomes has merit for identifying novel biomarkers associated with changes in mood states and fatigue. The promising biomarker protein presents an opportunity for the development of a rapid saliva-based test for the assessment of these changes.


Asunto(s)
Exosomas , MicroARNs , Biomarcadores/metabolismo , Exosomas/genética , Exosomas/metabolismo , MicroARNs/metabolismo , Saliva/metabolismo
3.
Anal Biochem ; 596: 113636, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32081619

RESUMEN

A procedure is described to measure curcumin (C), demethoxycurcumin (DMC), bisdemethoxycurcumin (BDMC), tetrahydrocurcumim (TC) and their glucuronidated metabolites (CG, DMCG, and BDMCG) in plasma, brain, liver and tumor samples. The procedure involves converting the analytes to their boron difluoride derivatives and analyzing them by combined liquid chromatography coupled to an ion trap mass spectrometer operating in the negative ion MSn scan mode. The method has superb limits of detection of 0.01 nM for all curcuminoids and 0.5 nM for TC and the glucuroniated metabolites, and several representative chromatograms of biological samples containing these analytes are provided. In addition, the pharmacokinetic profile of these compounds in one human who daily consumed an over-the-counter curcuminoid product shows the peak and changes in circulating concentrations achieved by this mode of administration.


Asunto(s)
Boranos/química , Diarilheptanoides/sangre , Animales , Cromatografía Liquida , Diarilheptanoides/química , Diarilheptanoides/aislamiento & purificación , Voluntarios Sanos , Humanos , Espectrometría de Masas , Ratones , Estructura Molecular
4.
Neuroreport ; 27(11): 791-5, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27281274

RESUMEN

The Apolipoprotein E (ApoE) isotype ApoE4 is a prevalent genetic risk factor for Alzheimer's disease (AD) that can modulate systemic and central inflammation, independent of amyloid accumulation. Although disruption of innate immune toll receptor signaling is modulated by ApoE and observed in AD, ApoE isotype-specific effects remain poorly understood. Therefore, we examined the effect of the ApoE isotype on the brain levels of major regulators of TLR signaling including miR146a, a microRNA enriched in the brain. We used 6-month-old ApoE3 or ApoE4 targeted replacement mice with and without mutant familial AD transgenes. ApoE4 reduced the levels of miR146a compared with ApoE3, both in the brain (29%; P<0.0001) and in plasma (47%; P<0.05), which correlated with each other (r=0.74; P<0.05). The presence of 5xFAD transgenes increased brain miR146a in both ApoE3 (E3FAD) and ApoE4 (E4FAD) mice; however, miR146a levels in E4FAD mice remained lower than those in E3FAD mice (62%; P<0.05), despite increased amyloid and inflammation. Supporting these observations, ApoE4 brains showed increased expression of interleukin receptor-associated kinase-1 (160%; P<0.05) (normally downregulated by miR146) that correlated inversely with miR146a levels (r=0.637; P<0.0001). Reduced negative feedback of toll-like receptor signaling (by miRNA146a) can explain early-life hypersensitivity to innate immune stimuli (including Aß) in ApoE4 carriers. Thus, ApoE4 causes early dysregulation of a central controller of the innate immune system both centrally and systemically. This defect persists with familial AD pathology and may be relevant to ApoE4 AD risk.


Asunto(s)
Apolipoproteína E3/genética , Apolipoproteína E4/genética , Encéfalo/metabolismo , Regulación de la Expresión Génica/genética , MicroARNs/metabolismo , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Femenino , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal/genética , Transactivadores/metabolismo
5.
Expert Rev Neurother ; 15(6): 629-37, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26035622

RESUMEN

Curcumin, a polyphenolic antioxidant derived from the turmeric root has undergone extensive preclinical development, showing remarkable efficacy in wound repair, cancer and inflammatory disorders. This review addresses the rationale for its use in neurodegenerative disease, particularly Alzheimer's disease. Curcumin is a pleiotropic molecule, which not only directly binds to and limits aggregation of the ß-sheet conformations of amyloid characteristic of many neurodegenerative diseases but also restores homeostasis of the inflammatory system, boosts the heat shock system to enhance clearance of toxic aggregates, scavenges free radicals, chelates iron and induces anti-oxidant response elements. Although curcumin corrects dysregulation of multiple pathways, it may exert many effects via a few molecular targets. Pharmaceutical development of natural compounds like curcumin and synthetic derivatives have strong scientific rationale, but will require overcoming various hurdles including; high cost of trials, concern about profitability and misconceptions about drug specificity, stability, and bioavailability.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Curcumina/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Humanos , Modelos Biológicos , Enfermedades Neurodegenerativas/patología , Retina/efectos de los fármacos , Retina/metabolismo , Proteínas tau/metabolismo
6.
Lancet Neurol ; 14(4): 388-405, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25792098

RESUMEN

Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia, and trigger an innate immune response characterised by release of inflammatory mediators, which contribute to disease progression and severity. Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded proteins and the inflammatory reaction. External factors, including systemic inflammation and obesity, are likely to interfere with immunological processes of the brain and further promote disease progression. Modulation of risk factors and targeting of these immune mechanisms could lead to future therapeutic or preventive strategies for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Antiinflamatorios no Esteroideos/uso terapéutico , Lesiones Encefálicas/complicaciones , Inmunidad Innata , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Microglía/inmunología , Microglía/patología , Obesidad/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/prevención & control , Animales , Astrocitos/inmunología , Astrocitos/patología , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Lesiones Encefálicas/metabolismo , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Inmunización , Inflamación/diagnóstico , Inflamación/inmunología , Mediadores de Inflamación/inmunología , Locus Coeruleus/patología , Nootrópicos/administración & dosificación , Obesidad/metabolismo , Fagocitosis , Pliegue de Proteína , Factores de Riesgo , Índice de Severidad de la Enfermedad
7.
Neurol Genet ; 1(3): e22, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27066559

RESUMEN

OBJECTIVE: We investigated the association between apoE protein plasma levels and brain amyloidosis and the effect of the top 10 Alzheimer disease (AD) risk genes on this association. METHODS: Our dataset consisted of 18 AD, 52 mild cognitive impairment, and 3 cognitively normal Alzheimer's Disease Neuroimaging Initiative 1 (ADNI1) participants with available [(11)C]-Pittsburgh compound B (PiB) and peripheral blood protein data. We used cortical pattern matching to study associations between plasma apoE and cortical PiB binding and the effect of carrier status for the top 10 AD risk genes. RESULTS: Low plasma apoE was significantly associated with high PiB SUVR, except in the sensorimotor and entorhinal cortex. For BIN1 rs744373, the association was observed only in minor allele carriers. For CD2AP rs9349407 and CR1 rs3818361, the association was preserved only in minor allele noncarriers. We did not find evidence for modulation by CLU, PICALM, ABCA7, BIN1, and MS4A6A. CONCLUSIONS: Our data show that BIN1 rs744373, CD2AP rs9349407, and CR1 rs3818361 genotypes modulate the association between apoE protein plasma levels and brain amyloidosis, implying a potential epigenetic/downstream interaction.

8.
J Neurosci ; 34(21): 7124-36, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24849348

RESUMEN

Hyperphosphorylation and accumulation of tau aggregates are prominent features in tauopathies, including Alzheimer's disease, but the impact of loss of tau function on synaptic and cognitive deficits remains poorly understood. We report that old (19-20 months; OKO) but not middle-aged (8-9 months; MKO) tau knock-out mice develop Morris Water Maze (MWM) deficits and loss of hippocampal acetylated α-tubulin and excitatory synaptic proteins. Mild motor deficits and reduction in tyrosine hydroxylase (TH) in the substantia nigra were present by middle age, but did not affect MWM performance, whereas OKO mice showed MWM deficits paralleling hippocampal deficits. Deletion of tau, a microtubule-associated protein (MAP), resulted in increased levels of MAP1A, MAP1B, and MAP2 in MKO, followed by loss of MAP2 and MAP1B in OKO. Hippocampal synaptic deficits in OKO mice were partially corrected with dietary supplementation with docosahexaenoic acid (DHA) and both MWM and synaptic deficits were fully corrected by combining DHA with α-lipoic acid (ALA), which also prevented TH loss. DHA or DHA/ALA restored phosphorylated and total GSK3ß and attenuated hyperactivation of the tau C-Jun N-terminal kinases (JNKs) while increasing MAP1B, dephosphorylated (active) MAP2, and acetylated α-tubulin, suggesting improved microtubule stability and maintenance of active compensatory MAPs. Our results implicate the loss of MAP function in age-associated hippocampal deficits and identify a safe dietary intervention, rescuing both MAP function and TH in OKO mice. Therefore, in addition to microtubule-stabilizing therapeutic drugs, preserving or restoring compensatory MAP function may be a useful new prevention strategy.


Asunto(s)
Envejecimiento/patología , Hipocampo/patología , Aprendizaje por Laberinto/fisiología , Sinapsis/metabolismo , Proteínas tau/deficiencia , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hipocampo/efectos de los fármacos , Discapacidades para el Aprendizaje/dietoterapia , Discapacidades para el Aprendizaje/etiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trastornos del Movimiento/dietoterapia , Trastornos del Movimiento/etiología , Desempeño Psicomotor/fisiología , Tiempo de Reacción/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patología , Sinapsis/efectos de los fármacos , Sinapsis/genética , Ácido Tióctico/administración & dosificación
9.
J Biol Chem ; 288(6): 4056-65, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23264626

RESUMEN

The mechanisms underlying Tau-related synaptic and cognitive deficits and the interrelationships between Tau species, their clearance pathways, and synaptic impairments remain poorly understood. To gain insight into these mechanisms, we examined these interrelationships in aged non-mutant genomic human Tau mice, with established Tau pathology and neuron loss. We also examined how these interrelationships changed with an intervention by feeding mice either a control diet or one containing the brain permeable beta-amyloid and Tau aggregate binding molecule curcumin. Transgene-dependent elevations in soluble and insoluble phospho-Tau monomer and soluble Tau dimers accompanied deficits in behavior, hippocampal excitatory synaptic markers, and molecular chaperones (heat shock proteins (HSPs)) involved in Tau degradation and microtubule stability. In human Tau mice but not control mice, HSP70, HSP70/HSP72, and HSP90 were reduced in membrane-enriched fractions but not in cytosolic fractions. The synaptic proteins PSD95 and NR2B were reduced in dendritic fields and redistributed into perikarya, corresponding to changes observed by immunoblot. Curcumin selectively suppressed levels of soluble Tau dimers, but not of insoluble and monomeric phospho-Tau, while correcting behavioral, synaptic, and HSP deficits. Treatment increased PSD95 co-immunoprecipitating with NR2B and, independent of transgene, increased HSPs implicated in Tau clearance. It elevated HSP90 and HSC70 without increasing HSP mRNAs; that is, without induction of the heat shock response. Instead curcumin differentially impacted HSP90 client kinases, reducing Fyn without reducing Akt. In summary, curcumin reduced soluble Tau and elevated HSPs involved in Tau clearance, showing that even after tangles have formed, Tau-dependent behavioral and synaptic deficits can be corrected.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacocinética , Conducta Animal/efectos de los fármacos , Curcumina/farmacología , Proteínas de Choque Térmico/metabolismo , Multimerización de Proteína/efectos de los fármacos , Sinapsis/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Homólogo 4 de la Proteína Discs Large , Femenino , Proteínas de Choque Térmico/genética , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Multimerización de Proteína/genética , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Solubilidad/efectos de los fármacos , Sinapsis/genética , Sinapsis/patología , Tauopatías/tratamiento farmacológico , Tauopatías/genética , Tauopatías/patología , Proteínas tau/genética
10.
Cell Logist ; 2(2): 117-125, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23162743

RESUMEN

Developmental cognitive deficits including X-linked mental retardation (XLMR) can be caused by mutations in P21-activated kinase 3 (PAK3) that disrupt actin dynamics in dendritic spines. Neurodegenerative diseases such as Alzheimer disease (AD), where both PAK1 and PAK3 are dysregulated, may share final common pathways with XLMR. Independent of familial mutation, cognitive deficits emerging with aging, notably AD, begin after decades of normal function. This prolonged prodromal period involves the buildup of amyloid-ß (Aß) extracellular plaques and intraneuronal neurofibrillary tangles (NFT). Subsequently region dependent deficits in synapses, dendritic spines and cognition coincide with dysregulation in PAK1 and PAK. Specifically proximal to decline, cytoplasmic levels of actin-regulating Rho GTPase and PAK1 kinase are decreased in moderate to severe AD, while aberrant activation and translocation of PAK1 appears around the onset of cognitive deficits. Downstream to PAK1, LIM kinase inactivates cofilin, contributing to cofilin pathology, while the activation of Rho-dependent kinase ROCK increases Aß production. Aß activation of fyn disrupts neuronal PAK1 and ROCK-mediated signaling, resulting in synaptic deficits. Reductions in PAK1 by the anti-amyloid compound curcumin suppress synaptotoxicity. Similarly other neurological disorders, including Huntington disease (HD) show dysregulation of PAKs. PAK1 modulates mutant huntingtin toxicity by enhancing huntingtin aggregation, and inhibition of PAK activity protects HD as well as fragile X syndrome (FXS) symptoms. Since PAK plays critical roles in learning and memory and is disrupted in many cognitive disorders, targeting PAK signaling in AD, HD and XLMR may be a novel common therapeutic target for AD, HD and XLMR.

11.
Alzheimers Res Ther ; 4(5): 43, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23107780

RESUMEN

INTRODUCTION: Curcumin is a polyphenolic compound derived from the plant Curcuma Long Lin that has been demonstrated to have antioxidant and anti-inflammatory effects as well as effects on reducing beta-amyloid aggregation. It reduces pathology in transgenic models of Alzheimer's disease (AD) and is a promising candidate for treating human AD. The purpose of the current study is to generate tolerability and preliminary clinical and biomarker efficacy data on curcumin in persons with AD. METHODS: We performed a 24-week randomized, double blind, placebo-controlled study of Curcumin C3 Complex(®) with an open-label extension to 48 weeks. Thirty-six persons with mild-to-moderate AD were randomized to receive placebo, 2 grams/day, or 4 grams/day of oral curcumin for 24 weeks. For weeks 24 through 48, subjects that were receiving curcumin continued with the same dose, while subjects previously receiving placebo were randomized in a 1:1 ratio to 2 grams/day or 4 grams/day. The primary outcome measures were incidence of adverse events, changes in clinical laboratory tests and the Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-Cog) at 24 weeks in those completing the study. Secondary outcome measures included the Neuropsychiatric Inventory (NPI), the Alzheimer's Disease Cooperative Study - Activities of Daily Living (ADCS-ADL) scale, levels of Aß1-40 and Aß1-42 in plasma and levels of Aß1-42, t-tau, p-tau181 and F2-isoprostanes in cerebrospinal fluid. Plasma levels of curcumin and its metabolites up to four hours after drug administration were also measured. RESULTS: Mean age of completers (n = 30) was 73.5 years and mean Mini-Mental Status Examination (MMSE) score was 22.5. One subject withdrew in the placebo (8%, worsened memory) and 5/24 subjects withdrew in the curcumin group (21%, 3 due to gastrointestinal symptoms). Curcumin C3 Complex(®) was associated with lowered hematocrit and increased glucose levels that were clinically insignificant. There were no differences between treatment groups in clinical or biomarker efficacy measures. The levels of native curcumin measured in plasma were low (7.32 ng/mL). CONCLUSIONS: Curcumin was generally well-tolerated although three subjects on curcumin withdrew due to gastrointestinal symptoms. We were unable to demonstrate clinical or biochemical evidence of efficacy of Curcumin C3 Complex(®) in AD in this 24-week placebo-controlled trial although preliminary data suggest limited bioavailability of this compound. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT00099710.

12.
Arch Neurol ; 69(6): 757-64, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22689192

RESUMEN

OBJECTIVE: To study the effect of familial Alzheimer disease (FAD) mutations and APOE genotype on plasma signaling protein levels. DESIGN: Cross-sectional comparison of plasma levels of 77 proteins measured using multiplex immune assays. SETTING: A tertiary referral dementia research center. PARTICIPANTS: Thirty-three persons from families harboring PSEN1 or APP mutations, aged 19 to 59 years. MAIN OUTCOME MEASURES: Protein levels were compared between FAD mutation carriers (MCs) and noncarriers (NCs) and among APOE genotype groups, using multiple linear regression models. RESULTS: Twenty-one participants were FAD MCs and 12 were NCs. Six had the APOE ε2/3, 6 had the ε3/4, and 21 had the ε3/3 genotype. Levels of 17 proteins differed among APOE genotype groups, and there were significant interactions between age and APOE genotype for 12 proteins. Plasma levels of apolipoprotein E and superoxide dismutase 1 were highest in the ε2 carriers, lowest in ε4 carriers, and intermediate in the ε3 carriers. Levels of multiple interleukins showed the opposite pattern and, among the ε4 carriers, demonstrated significant negative correlations with age. Although there were no significant differences between FAD MCs and NCs, there were interactions between mutation status and APOE genotype for 13 proteins. CONCLUSIONS: We found different patterns of inflammatory markers in young and middle-aged persons among APOE genotype groups. The APOE ε4 carriers had the lowest levels of apolipoprotein E. Young ε4 carriers have increased inflammatory markers that diminish with age. We demonstrated altered inflammatory responses in young and middle adulthood in ε4 carriers that may relate to AD risk later in life.


Asunto(s)
Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Proteínas Sanguíneas/metabolismo , Mutación , Adulto , Factores de Edad , Precursor de Proteína beta-Amiloide/genética , Citocinas/metabolismo , Femenino , Pruebas Genéticas , Genotipo , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Presenilina-1/genética , Escalas de Valoración Psiquiátrica , Factores de Riesgo , Adulto Joven
13.
Dement Geriatr Cogn Disord ; 33(1): 1-5, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22343824

RESUMEN

BACKGROUND/AIMS: Biological markers of utility in tracking Alzheimer's disease (AD) during the presymptomatic prodromal phase are important for prevention studies. Changes in cerebrospinal fluid (CSF) levels of 42-amino-acid ß-amyloid (Aß(42)), total tau protein (t-tau) and phosphorylated tau at residue 181 (p-tau(181)) during this state are incompletely characterized. METHODS: We measured CSF markers in 13 carriers of familial AD (FAD) mutations that are fully penetrant for causing AD (PSEN1 and APP) and in 5 non-mutation-carrying family members. RESULTS: Even among the entirely presymptomatic mutation carriers (n = 9), Aß(42) was diminished (388.7 vs. 618.4 pg/ml, p = 0.004), and t-tau (138.5 vs. 50.5 pg/ml, p = 0.002) and p-tau(181) (71.7 vs. 24.6 pg/ml, p = 0.003) were elevated. There was a negative correlation between Aß(42) levels and age relative to the family-specific age of dementia diagnosis. CONCLUSIONS: Our data are consistent with a decline in CSF Aß(42) levels occurring at least 20 years prior to clinical dementia in FAD.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Factores de Edad , Anciano , Péptidos beta-Amiloides/líquido cefalorraquídeo , Precursor de Proteína beta-Amiloide/líquido cefalorraquídeo , Precursor de Proteína beta-Amiloide/genética , Apolipoproteínas E/genética , Biomarcadores , Estudios de Cohortes , ADN/genética , Diagnóstico Precoz , Femenino , Genotipo , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Fragmentos de Péptidos/líquido cefalorraquídeo , Presenilina-1/genética , Proteínas tau/líquido cefalorraquídeo
14.
Alzheimers Res Ther ; 3(1): 2, 2011 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-21251328

RESUMEN

The results of a randomized double-blind placebocontrolled trial with docosahexaenoic acid (DHA) supplementation in mild to moderate Alzheimer's disease (AD) published by Quinn and colleagues in JAMA argues against overall efficacy of DHA in slowing progression. However, certain caveats in the results caution against discarding DHA altogether, raising questions about oxidation, dosage, pharmacogenomics and stage of intervention.One potential misconception is that what works for prevention will slow progression in AD subjects.Preclinical studies with DHA supported the rationale for early stage intervention; and three epidemiological studies indicated DHA intake was associated with reduced risk in non-apolipoprotein E4 (ApoE4) carriers. Putative drugs are initially tested for impact on progression because prevention approaches are problematic. However, should a drug be discarded for prevention if it fails to modify progression? Consistent with epidemiology, DHA significantly benefited two measures of cognition in mild to moderate non-ApoE4 carriers. Although the results of this trial were overall negative, failing to modify other outcomes, this commentary discusses important questions raised by them. Should future trials pursue DHA in non-ApoE4 carriers for slowing progression? Since in vivo oxidation of DHA may have adverse effects, particularly in ApoE4 patients, should preclinical and clinical studies be performed to optimize dose and mitigate oxidation before pursuing intervention or prevention trials with DHA? And finally, should DHA be tested now for mild cognitive impairment or prevention?

15.
Nutr Rev ; 68 Suppl 2: S102-11, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21091943

RESUMEN

Aging contributes to physiological decline and vulnerability to disease. In the brain, even with minimal neuronal loss, aging increases oxidative damage, inflammation, demyelination, impaired processing, and metabolic deficits, particularly during pathological brain aging. In this review, the possible role of docosahexaenoic acid (DHA) in the prevention of age-related disruption of brain function is discussed. High-fat diabetogenic diets, cholesterol, and the omega-6 fatty acid arachidonate and its prostaglandin metabolites have all been implicated in promoting the pathogenesis of Alzheimer's disease. Evidence presented here shows DHA acts to oppose this, exerting a plethora of pleiotropic activities to protect against the pathogenesis of Alzheimer's disease.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/efectos de los fármacos , Grasas Insaturadas en la Dieta/administración & dosificación , Ácidos Docosahexaenoicos/administración & dosificación , Anciano , Envejecimiento/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiología , Demencia/metabolismo , Demencia/prevención & control , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/metabolismo , Humanos
16.
Mol Neurobiol ; 41(2-3): 392-409, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20437209

RESUMEN

Alzheimer's disease (AD) involves a complex pathological cascade thought to be initially triggered by the accumulation of beta-amyloid (Abeta) peptide aggregates or aberrant amyloid precursor protein (APP) processing. Much is known of the factors initiating the disease process decades prior to the onset of cognitive deficits, but an unclear understanding of events immediately preceding and precipitating cognitive decline is a major factor limiting the rapid development of adequate prevention and treatment strategies. Multiple pathways are known to contribute to cognitive deficits by disruption of neuronal signal transduction pathways involved in memory. These pathways are altered by aberrant signaling, inflammation, oxidative damage, tau pathology, neuron loss, and synapse loss. We need to develop stage-specific interventions that not only block causal events in pathogenesis (aberrant tau phosphorylation, Abeta production and accumulation, and oxidative damage), but also address damage from these pathways that will not be reversed by targeting prodromal pathways. This approach would not only focus on blocking early events in pathogenesis, but also adequately correct for loss of synapses, substrates for neuroprotective pathways (e.g., docosahexaenoic acid), defects in energy metabolism, and adverse consequences of inappropriate compensatory responses (aberrant sprouting). Monotherapy targeting early single steps in this complicated cascade may explain disappointments in trials with agents inhibiting production, clearance, or aggregation of the initiating Abeta peptide or its aggregates. Both plaque and tangle pathogenesis have already reached AD levels in the more vulnerable brain regions during the "prodromal" period prior to conversion to "mild cognitive impairment (MCI)." Furthermore, many of the pathological events are no longer proceeding in series, but are going on in parallel. By the MCI stage, we stand a greater chance of success by considering pleiotropic drugs or cocktails that can independently limit the parallel steps of the AD cascade at all stages, but that do not completely inhibit the constitutive normal functions of these pathways. Based on this hypothesis, efforts in our laboratories have focused on the pleiotropic activities of omega-3 fatty acids and the anti-inflammatory, antioxidant, and anti-amyloid activity of curcumin in multiple models that cover many steps of the AD pathogenic cascade (Cole and Frautschy, Alzheimers Dement 2:284-286, 2006).


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Antiinflamatorios no Esteroideos/metabolismo , Antiinflamatorios no Esteroideos/uso terapéutico , Ensayos Clínicos como Asunto , Curcumina/metabolismo , Curcumina/uso terapéutico , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/uso terapéutico , Síndrome de Down/genética , Metabolismo Energético , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Humanos , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Transducción de Señal/fisiología , Proteínas tau/genética , Proteínas tau/metabolismo
17.
CNS Neurol Disord Drug Targets ; 9(2): 140-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20205646

RESUMEN

Alzheimer's disease (AD) is accompanied by an activation of the innate immune system, and many epidemiological studies have shown reduced risk for dementia or AD associated with chronic consumption of non-steroidal anti-inflammatory drugs (NSAIDs). These observations led to animal model studies to test the hypothesis that NSAIDs can be disease-modifying for some aspects of AD pathogenesis. NSAIDs cannot only suppress inflammatory targets, which could contribute to neuroprotection, they also slow amyloid deposition by mechanisms that remain unclear. Several large clinical trials with NSAID therapies with AD subjects have failed, and cyclooxygenase-2 does not appear to be a useful target for disease modifying therapy. However, there may be apolipoprotein E E4 pharmacogenomic effects and a real but delayed positive signal in a large primary prevention trial with naproxen. This encourages researchers to re-address possible mechanisms for a stage-dependent NSAID efficacy, the subject of this review.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antiinflamatorios no Esteroideos/farmacología , Química Encefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encefalitis/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/prevención & control , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Apolipoproteína E4/antagonistas & inhibidores , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatología , Química Encefálica/fisiología , Ensayos Clínicos como Asunto , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Modelos Animales de Enfermedad , Encefalitis/fisiopatología , Encefalitis/prevención & control , Humanos , Fármacos Neuroprotectores/uso terapéutico
18.
J Nutr ; 140(4): 869-74, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20181786

RESUMEN

The risk for dementia, a major contributor to incapacitation and institutionalization, rises rapidly as we age, doubling every 5 y after age 65. Tens of millions of new Alzheimer's disease (AD) and other dementia cases are projected as elderly populations increase around the world, creating a projected dementia epidemic for which most nations are not prepared. Thus, there is an urgent need for prevention approaches that are safe, effective, and affordable. This review addresses the potential of one promising candidate, the (n-3) fatty acid docosahexaenoic acid (DHA), which appears to slow pathogenesis of AD and possibly vascular dementia. DHA is pleiotropic, acting at multiple steps to reduce the production of the beta-amyloid peptide, widely believed to initiate AD. DHA moderates some of the kinases that hyperphosphorylate the tau-protein, a component of the neurofibrillary tangle. DHA may help suppress insulin/neurotrophic factor signaling deficits, neuroinflammation, and oxidative damage that contribute to synaptic loss and neuronal dysfunction in dementia. Finally, DHA increases brain levels of neuroprotective brain-derived neurotrophic factor and reduces the (n-6) fatty acid arachidonate and its prostaglandin metabolites that have been implicated in promoting AD. Clinical trials suggest that DHA or fish oil alone can slow early stages of progression, but these effects may be apolipoprotein E genotype specific, and larger trials with very early stages are required to prove efficacy. We advocate early intervention in a prodromal period with nutrigenomically defined subjects with an appropriately designed nutritional supplement, including DHA and antioxidants.


Asunto(s)
Envejecimiento , Demencia/prevención & control , Ácidos Docosahexaenoicos/administración & dosificación , Anciano , Demencia/metabolismo , Ácidos Docosahexaenoicos/farmacología , Humanos
19.
J Neurosci ; 29(41): 12795-801, 2009 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-19828791

RESUMEN

The onset of age-related neurodegenerative diseases superimposed on a declining nervous system could enhance the motor and cognitive behavioral deficits that normally occur in senescence. It is likely that, in cases of severe deficits in memory or motor function, hospitalization and/or custodial care would be a likely outcome. This means that unless some way is found to reduce these age-related decrements in neuronal function, health care costs will continue to rise exponentially. Applying molecular biological approaches to slow aging in the human condition may be years away. So, it is important to determine what methods can be used today to increase healthy aging, forestall the onset of these diseases, and create conditions favorable to obtaining a "longevity dividend" in both financial and human terms. Recent studies suggest that consumption of diets rich in antioxidants and anti-inflammatory components such as those found in fruits, nuts, vegetables, and spices, or even reduced caloric intake, may lower age-related cognitive declines and the risk of developing neurodegenerative disease.


Asunto(s)
Envejecimiento , Encéfalo/fisiología , Enfermedades Neurodegenerativas/dietoterapia , Enfermedades Neurodegenerativas/patología , Fenómenos Fisiológicos de la Nutrición , Envejecimiento/efectos de los fármacos , Animales , Antioxidantes/farmacología , Restricción Calórica , Suplementos Dietéticos , Flavonoides/farmacología , Frutas/química , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Fenoles/farmacología , Polifenoles , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
20.
J Neurosci ; 29(28): 9078-89, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19605645

RESUMEN

Both insulin resistance (type II diabetes) and beta-amyloid (Abeta) oligomers are implicated in Alzheimer's disease (AD). Here, we investigate the role of Abeta oligomer-induced c-Jun N-terminal kinase (JNK) activation leading to phosphorylation and degradation of the adaptor protein insulin receptor substrate-1 (IRS-1). IRS-1 couples insulin and other trophic factor receptors to downstream kinases and neuroprotective signaling. Increased phospho-IRS-1 is found in AD brain and insulin-resistant tissues from diabetics. Here, we report Abeta oligomers significantly increased active JNK and phosphorylation of IRS-1 (Ser616) and tau (Ser422) in cultured hippocampal neurons, whereas JNK inhibition blocked these responses. The omega-3 fatty acid docosahexaenoic acid (DHA) similarly inhibited JNK and the phosphorylation of IRS-1 and tau in cultured hippocampal neurons. Feeding 3xTg-AD transgenic mice a diet high in saturated and omega-6 fat increased active JNK and phosphorylated IRS-1 and tau. Treatment of the 3xTg-AD mice on high-fat diet with fish oil or curcumin or a combination of both for 4 months reduced phosphorylated JNK, IRS-1, and tau and prevented the degradation of total IRS-1. This was accompanied by improvement in Y-maze performance. Mice fed with fish oil and curcumin for 1 month had more significant effects on Y-maze, and the combination showed more significant inhibition of JNK, IRS-1, and tau phosphorylation. These data indicate JNK mediates Abeta oligomer inactivation of IRS-1 and phospho-tau pathology and that dietary treatment with fish oil/DHA, curcumin, or a combination of both has the potential to improve insulin/trophic signaling and cognitive deficits in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/farmacología , Curcumina/farmacología , Inhibidores Enzimáticos/farmacología , Ácidos Grasos Omega-3/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/dietoterapia , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Conducta Animal , Células Cultivadas , Curcumina/uso terapéutico , Modelos Animales de Enfermedad , Embrión de Mamíferos , Inhibidores Enzimáticos/uso terapéutico , Ácidos Grasos Omega-3/uso terapéutico , Hipocampo/citología , Humanos , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Fosforilación/efectos de los fármacos , Cambios Post Mortem , Presenilina-1/genética , Ratas , Ratas Sprague-Dawley , Serina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...