Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(3): 734-737, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300102

RESUMEN

A honeycomb Floquet lattice with helically rotating waveguides and an interface separating two counter-propagating subdomains is analyzed. Two topologically protected localized waves propagate unidirectionally along the interface. Switching can occur when these interface modes reach the edge of the lattice and the light splits into waves traveling in two opposite directions. The incoming mode, traveling along the interface, can be adjusted and routed entirely or partially along either lattice edge with the switching direction based on a suitable mixing of the interface modes.

2.
Phys Rev Lett ; 127(10): 104101, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34533341

RESUMEN

Rogue waves are abnormally large waves which appear unexpectedly and have attracted considerable attention, particularly in recent years. The one space, one time (1+1) nonlinear Schrödinger equation is often used to model rogue waves; it is an envelope description of plane waves and admits the so-called Pergerine and Kuznetov-Ma soliton solutions. However, in deep water waves and certain electromagnetic systems where there are two significant transverse dimensions, the 2+1 hyperbolic nonlinear Schrödinger equation is the appropriate wave envelope description. Here we show that these rogue wave solutions suffer from strong transverse instability at long and short frequencies. Moreover, the stability of the Peregrine soliton is found to coincide with that of the background plane wave. These results indicate that, when applicable, transverse dimensions must be taken into account when investigating rogue wave pheneomena.

3.
Phys Rev E ; 103(4-1): 042214, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34005978

RESUMEN

The Peierls-Nabarro barrier is a discrete effect that frequently occurs in discrete nonlinear systems. A signature of the barrier is the slowing and eventual stopping of discrete solitary waves. This work examines intense electromagnetic waves propagating through a periodic honeycomb lattice of helically driven waveguides, which serves as a paradigmatic Floquet topological insulator. Here it is shown that discrete topologically protected edge modes do not suffer from the typical slowdown associated with the Peierls-Nabarro barrier. Instead, as a result of their topological nature, the modes always move forward and redistribute their energy: a narrow (discrete) mode transforms into a wide effectively continuous mode. On the other hand, a discrete edge mode that is not topologically protected does eventually slow down and stop propagating. Topological modes that are initially narrow naturally tend to wide envelope states that are described by a generalized nonlinear Schrödinger equation. These results provide insight into the nature of nonlinear topological insulators and their application.

4.
Proc Math Phys Eng Sci ; 476(2240): 20200300, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32922155

RESUMEN

The semi-classical Korteweg-de Vries equation for step-like data is considered with a small parameter in front of the highest derivative. Using perturbation analysis, Whitham theory is constructed to the higher order. This allows the order one phase and the complete leading-order solution to be obtained; the results are confirmed by extensive numerical calculations.

5.
Science ; 368(6493): 821-822, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32439777
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...