Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 74: 117046, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36228522

RESUMEN

Tuberculosis (TB) remains a leading cause of infectious disease-related mortality and morbidity. Pyrazinamide (PZA) is a critical component of the first-line TB treatment regimen because of its sterilizing activity against non-replicating Mycobacterium tuberculosis (Mtb), but its mechanism of action has remained enigmatic. PZA is a prodrug converted by pyrazinamidase encoded by pncA within Mtb to the active moiety, pyrazinoic acid (POA) and PZA resistance is caused by loss-of-function mutations to pyrazinamidase. We have recently shown that POA induces targeted protein degradation of the enzyme PanD, a crucial component of the coenzyme A biosynthetic pathway essential in Mtb. Based on the newly identified mechanism of action of POA, along with the crystal structure of PanD bound to POA, we designed several POA analogs using structure for interpretation to improve potency and overcome PZA resistance. We prepared and tested ring and carboxylic acid bioisosteres as well as 3, 5, 6 substitutions on the ring to study the structure activity relationships of the POA scaffold. All the analogs were evaluated for their whole cell antimycobacterial activity, and a few representative molecules were evaluated for their binding affinity, towards PanD, through isothermal titration calorimetry. We report that analogs with ring and carboxylic acid bioisosteres did not significantly enhance the antimicrobial activity, whereas the alkylamino-group substitutions at the 3 and 5 position of POA were found to be up to 5 to 10-fold more potent than POA. Further development and mechanistic analysis of these analogs may lead to a next generation POA analog for treating TB.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Pirazinamida/farmacología , Pirazinamida/metabolismo , Antituberculosos/farmacología , Antituberculosos/metabolismo , Amidohidrolasas/metabolismo , Tuberculosis/microbiología , Mutación , Relación Estructura-Actividad , Ácidos Carboxílicos/metabolismo , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana
2.
ACS Infect Dis ; 8(10): 1992-2018, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36048623

RESUMEN

The discovery of ß-lactam (BL) antibiotics in the early 20th century represented a remarkable advancement in human medicine, allowing for the widespread treatment of infectious diseases that had plagued humanity throughout history. Yet, this triumph was followed closely by the emergence of ß-lactamase (BLase), a bacterial weapon to destroy BLs. BLase production is a primary mechanism of resistance to BL antibiotics, and the spread of new homologues with expanded hydrolytic activity represents a pressing threat to global health. Nonetheless, researchers have developed strategies that take advantage of this defense mechanism, exploiting BLase activity in the creation of probes, diagnostic tools, and even novel antibiotics selective for resistant organisms. Early discoveries in the 1960s and 1970s demonstrating that certain BLs expel a leaving group upon BLase cleavage have spawned an entire field dedicated to employing this selective release mechanism, termed BLase-mediated fragmentation. Chemical probes have been developed for imaging and studying BLase-expressing organisms in the laboratory and diagnosing BL-resistant infections in the clinic. Perhaps most promising, new antibiotics have been developed that use BLase-mediated fragmentation to selectively release cytotoxic chemical "warheads" at the site of infection, reducing off-target effects and allowing for the repurposing of putative antibiotics against resistant organisms. This Review will provide some historical background to the emergence of this field and highlight some exciting recent reports that demonstrate the promise of this unique release mechanism.


Asunto(s)
Antibacterianos , beta-Lactamasas , Antibacterianos/química , Humanos , Monobactamas , beta-Lactamasas/química
3.
Chemistry ; 28(51): e202200995, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35697660

RESUMEN

Tuberculosis (TB) is a leading source of infectious disease mortality globally. Antibiotic-resistant strains comprise an estimated 10 % of new TB cases and present an urgent need for novel therapeutics. ß-lactam antibiotics have traditionally been ineffective against M. tuberculosis (Mtb), the causative agent of TB, due to the organism's inherent expression of ß-lactamases that destroy the electrophilic ß-lactam warhead. We have developed novel ß-lactam conjugates, which exploit this inherent ß-lactamase activity to achieve selective release of pyrazinoic acid (POA), the active form of a first-line TB drug. These conjugates are selectively active against M. tuberculosis and related mycobacteria, and activity is retained or even potentiated in multiple resistant strains and models. Preliminary mechanistic investigations suggest that both the POA "warhead" as well as the ß-lactam "promoiety" contribute to the observed activity, demonstrating a codrug strategy with important implications for future TB therapy.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Pirazinamida/análogos & derivados , Pirazinamida/farmacología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , beta-Lactamas/farmacología
4.
ACS Infect Dis ; 8(7): 1324-1335, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35731701

RESUMEN

Mycobacterium tuberculosis (Mtb) aspartate decarboxylase PanD is required for biosynthesis of the essential cofactor coenzyme A and targeted by the first line drug pyrazinamide (PZA). PZA is a prodrug that is converted by a bacterial amidase into its bioactive form pyrazinoic acid (POA). Employing structure-function analyses we previously identified POA-based inhibitors of Mtb PanD showing much improved inhibitory activity against the enzyme. Here, we performed the first structure-function studies on PanD encoded by the nontuberculous mycobacterial lung pathogen Mycobacterium abscessus (Mab), shedding light on the differences and similarities of Mab and Mtb PanD. Solution X-ray scattering data provided the solution structure of the entire tetrameric Mab PanD, which in comparison to the structure of the derived C-terminal truncated Mab PanD1-114 mutant revealed the orientation of the four flexible C-termini relative to the catalytic core. Enzymatic studies of Mab PanD1-114 explored the essentiality of the C-terminus for catalysis. A library of recombinant Mab PanD mutants based on structural information and PZA/POA resistant PanD mutations in Mtb illuminated critical residues involved in the substrate tunnel and enzymatic activity. Using our library of POA analogues, we identified (3-(1-naphthamido)pyrazine-2-carboxylic acid) (analogue 2) as the first potent inhibitor of Mab PanD. The inhibitor shows mainly electrostatic- and hydrogen bonding interaction with the target enzyme as explored by isothermal titration calorimetry and confirmed by docking studies. The observed unfavorable entropy indicates that significant conformational changes are involved in the binding process of analogue 2 to Mab PanD. In contrast to PZA and POA, which are whole-cell inactive, analogue 2 exerts appreciable antibacterial activity against the three subspecies of Mab.


Asunto(s)
Mycobacterium abscessus , Pirazinamida , Antituberculosos/farmacología , Carboxiliasas , Pirazinamida/análogos & derivados , Pirazinamida/farmacología
5.
ACS Chem Biol ; 16(6): 1030-1039, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33984234

RESUMEN

A common strategy employed in antibacterial drug discovery is the targeting of biosynthetic processes that are essential and specific for the pathogen. Specificity in particular avoids undesirable interactions with potential enzymatic counterparts in the human host, and it ensures on-target toxicity. Synthesis of pantothenate (Vitamine B5), which is a precursor of the acyl carrier coenzyme A, is an example of such a pathway. In Mycobacterium tuberculosis (Mtb), which is the causative agent of tuberculosis (TB), pantothenate is formed by pantothenate synthase, utilizing D-pantoate and ß-Ala as substrates. ß-Ala is mainly formed by the decarboxylation of l-aspartate, generated by the decarboxylase PanD, which is a homo-oliogomer in solution. Pyrazinoic acid (POA), which is the bioactive form of the TB prodrug pyrazinamide, binds and inhibits PanD activity weakly. Here, we generated a library of recombinant Mtb PanD mutants based on structural information and PZA/POA resistance mutants. Alterations in oligomer formation, enzyme activity, and/or POA binding were observed in respective mutants, providing insights into essential amino acids for Mtb PanD's proper structural assembly, decarboxylation activity and drug interaction. This information provided the platform for the design of novel POA analogues with modifications at position 3 of the pyrazine ring. Analogue 2, which incorporates a bulky naphthamido group at this position, displayed a 1000-fold increase in enzyme inhibition, compared to POA, along with moderately improved antimycobacterial activity. The data demonstrate that an improved understanding of mechanistic and enzymatic features of key metabolic enzymes can stimulate design of more-potent PanD inhibitors.


Asunto(s)
Antituberculosos/farmacología , Carboxiliasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/enzimología , Pirazinamida/análogos & derivados , Antituberculosos/química , Carboxiliasas/metabolismo , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinamida/química , Pirazinamida/farmacología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
6.
Artículo en Inglés | MEDLINE | ID: mdl-30483484

RESUMEN

para-Aminosalicylic acid (PAS) is a second-line anti-tubercular drug that is used for the treatment of drug-resistant tuberculosis (TB). PAS efficacy in the treatment of TB is limited by its lower potency against Mycobacterium tuberculosis relative to many other drugs in the TB treatment arsenal. It is known that intrinsic metabolites, such as, para-aminobenzoic acid (PABA) and methionine, antagonize PAS and structurally related anti-folate drugs. While the basis for PABA-mediated antagonism of anti-folates is understood, the mechanism for methionine-based antagonism remains undefined. In the present study, we used both targeted and untargeted approaches to identify factors associated with methionine-mediated antagonism of PAS activity. We found that synthesis of folate precursors as well as a putative amino acid transporter, designated MetM, play crucial roles in this process. Disruption of metM by transposon insertion resulted in a ≥30-fold decrease in uptake of methionine in M. bovis BCG, indicating that metM is the major facilitator of methionine transport. We also discovered that intracellular biotin confers intrinsic PAS resistance in a methionine-independent manner. Collectively, our results demonstrate that methionine-mediated antagonism of anti-folate drugs occurs through sustained production of folate precursors.


Asunto(s)
Ácido Aminosalicílico/farmacología , Antituberculosos/farmacología , Antagonismo de Drogas , Metionina/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Ácido 4-Aminobenzoico/metabolismo , Ácido 4-Aminobenzoico/farmacología , Proteínas Bacterianas/metabolismo , Biotina/metabolismo , Farmacorresistencia Bacteriana/genética , Ácido Fólico/farmacología , Metionina/metabolismo , Pruebas de Sensibilidad Microbiana , Mycobacterium/efectos de los fármacos , Mycobacterium/genética , Mycobacterium/crecimiento & desarrollo , Mycobacterium tuberculosis/crecimiento & desarrollo
7.
Bioorg Med Chem ; 26(9): 2354-2364, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29656990

RESUMEN

A series of arylnaphthalene lignan lactones based on the structure of the phyllanthusmins, a class of potent natural products possessing diphyllin as the aglycone, has been synthesized and screened for activity against multiple cancer cell lines. SAR exploration was performed on both the carbohydrate and lactone moieties of this structural class. These studies have revealed the importance of functionalization of the carbohydrate hydroxy groups with both acetylated and methylated analogues showing increased potency relative to those with unsubstituted sugar moieties. In addition, the requirement for the presence and position of the C-ring lactone has been demonstrated through reduction and selective re-oxidation of the lactone ring. The most potent compound in this study displayed an IC50 value of 18 nM in an HT-29 assay with several others ranging from 50 to 200 nM. In an effort to elucidate their potential mechanism(s) of action, the DNA topoisomerase IIa inhibitory activity of the most potent compounds was examined based on previous reports of structurally similar compounds, but does not appear to contribute significantly to their antiproliferative effects.


Asunto(s)
Antineoplásicos/farmacología , Glicósidos/farmacología , Lactonas/farmacología , Lignanos/farmacología , Naftalenos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Benzodioxoles/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Etopósido/farmacología , Glicósidos/síntesis química , Glicósidos/química , Humanos , Lactonas/síntesis química , Lactonas/química , Lignanos/síntesis química , Lignanos/química , Estructura Molecular , Naftalenos/síntesis química , Naftalenos/química , Estereoisomerismo , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...