Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446386

RESUMEN

Connexin 43 (Cx43) is expressed in the left and right ventricles and is primarily responsible for conducting physiological responses in microvasculature. Studies have demonstrated that NADPH oxidase (NOX) enzymes are essential in cardiac redox biology and are responsible for the generation of reactive oxygen species (ROS). NOX2 is linked to left ventricular remodeling following myocardial infarction (MI). It was hypothesized that conjugated linoleic acid (cLA) treatment increases NOX-2 levels in heart tissue and disrupts connexins between the myocytes in the ventricle. Data herein demonstrate that cLA treatment significantly decreases survival in a murine model of MI. The observance of cLA-induced ventricular tachyarrhythmia's (VT) led to the subsequent investigation of the underlying mechanism in this MI model. Mice were treated with cLA for 12 h, 24 h, 48 h, or 72 h to determine possible time-dependent changes in NOX and Cx43 signaling pathways in isolated left ventricles (LV) extracted from cardiac tissue. The results suggest that ROS generation, through the stimulation of NOX2 in the LV, triggers a decrease in Cx43 levels, causing dysfunction of the gap junctions following treatment with cLA. This cascade of events may initiate VT and subsequent death during MI. Taken together, individuals at risk of MI should use caution regarding cLA consumption.


Asunto(s)
Ácidos Linoleicos Conjugados , Infarto del Miocardio , Ratones , Animales , Conexina 43/metabolismo , Ácidos Linoleicos Conjugados/farmacología , Especies Reactivas de Oxígeno/metabolismo , Infarto del Miocardio/metabolismo , NADPH Oxidasas/metabolismo , Conexinas/metabolismo , Muerte Súbita , Remodelación Ventricular
2.
J Cell Physiol ; 233(7): 5214-5221, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29150941

RESUMEN

The occurrence of myocardial infarction (MI) increases appreciably with age. In the Framingham Heart Study, the incidence of MI more than doubles for men and increases more than five-fold in women (ages 55-64 years compared to 85-94 years). MicroRNAs (miRNAs) quantitatively regulate their target's expression post-transcriptionally by either silencing action through binding at the 3'UTR domains or degrading the messages at their coding regions. In either case, these regulations affect the cardiac transcriptional output and cardiac function. Among the known cardiac associated miRNA, miRNA-1, miRNA-133a, and miRNA-34a have been shown to induce adverse structural remodeling to impair cardiac contractile function. In the present study, an in vivo model of MI in young (3 month) and old (22 month) mice is used to investigate the possible role whereby these three miRNAs exert negative effects on heart function following MI. Herein we demonstrate that in older mouse heart, all three microRNAs show increased levels of expression, while miRNA-1 shows a further increase in old mouse heart following MI, which corresponds to left ventricular (LV) wall thinning. These structural changes in cardiac tissue may causes downstream LV dilation and subsequent LV dysfunction. Results presented here suggest that significantly elevated levels of miRNA-1 in post-MI old heart could be predictive of cardiac injury in older mice as the high risk biomarker for MI in older individuals.


Asunto(s)
Envejecimiento/genética , Lesiones Cardíacas/genética , MicroARNs/genética , Infarto del Miocardio/genética , Anciano , Anciano de 80 o más Años , Animales , Modelos Animales de Enfermedad , Femenino , Lesiones Cardíacas/fisiopatología , Humanos , Masculino , Ratones , Persona de Mediana Edad , Infarto del Miocardio/fisiopatología , Caracteres Sexuales , Función Ventricular Izquierda/genética
3.
Exp Cell Res ; 347(1): 222-231, 2016 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-27515002

RESUMEN

Acquired tamoxifen (TAM) resistance is a significant clinical problem in treating patients with estrogen receptor α (ERα)+ breast cancer. We reported that ERα increases nuclear respiratory factor-1 (NRF-1), which regulates nuclear-encoded mitochondrial gene transcription, in MCF-7 breast cancer cells and NRF-1 knockdown stimulates apoptosis. Whether NRF-1 and target gene expression is altered in endocrine resistant breast cancer cells is unknown. We measured NRF-1and metabolic features in a cell model of progressive TAM-resistance. NRF-1 and its target mitochondrial transcription factor A (TFAM) were higher in TAM-resistant LCC2 and LCC9 cells than TAM-sensitive MCF-7 cells. Using extracellular flux assays we observed that LCC1, LCC2, and LCC9 cells showed similar oxygen consumption rate (OCR), but lower mitochondrial reserve capacity which was correlated with lower Succinate Dehydrogenase Complex, Subunit B in LCC1 and LCC2 cells. Complex III activity was lower in LCC9 than MCF-7 cells. LCC1, LCC2, and LCC9 cells had higher basal extracellular acidification (ECAR), indicating higher aerobic glycolysis, relative to MCF-7 cells. Mitochondrial bioenergetic responses to estradiol and 4-hydroxytamoxifen were reduced in the endocrine-resistant cells compared to MCF-7 cells. These results suggest the acquisition of altered metabolic phenotypes in response to long term antiestrogen treatment may increase vulnerability to metabolic stress.


Asunto(s)
Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Metabolismo Energético , Factor Nuclear 1 de Respiración/metabolismo , Tamoxifeno/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Respiración de la Célula/efectos de los fármacos , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Estradiol/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Tamoxifeno/análogos & derivados , Factores de Transcripción/metabolismo
4.
J Nutr Biochem ; 34: 8-16, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27156147

RESUMEN

Cardiovascular health is influenced by dietary composition and the western diet is composed of varying types/amounts of fat. Conjugated linoleic acid (cLA) is an abundant dietary unsaturated fatty acid associated with health benefits but its biological signaling is not well understood. Nitrite is enriched in vegetables within the diet and can impact signaling of unsaturated fatty acids; however, its role on cLA signaling is not well understood. Elucidating how nitrite may impact the biological signaling of cLA is important due to the dietary consumption of both cLA and nitrite in the western diet. Since co-administration of cLA and nitrite results in cardioprotection during myocardial infarction (MI), it was hypothesized that cLA and nitrite may affect cardiac mitochondrial respiratory function and complex activity in MI. C57BL/6J mice were treated with cLA and nitrite for either 10 or 13days, where MI was induced on day 3. Following treatment, respiration and complex activity were measured. Among the major findings of this study, cLA treatment (10days) decreases state 3 respiration in vivo. Following MI, nitrite alone and in combination with cLA attenuates increased state 3 respiration and decreases hydrogen peroxide levels. Further, nitrite and cLA co-treatment attenuates increased complex III activity after MI. These results suggest that cLA, nitrite and the combination significantly alter cardiac mitochondrial respiratory and electron transport chain activity in vivo and following MI. Overall, the daily consumption of cLA and nitrite in the diet can have diverse cardiovascular implications, some of which occur at the mitochondrial level.


Asunto(s)
Cardiotónicos/uso terapéutico , Suplementos Dietéticos , Modelos Animales de Enfermedad , Ácidos Linoleicos Conjugados/uso terapéutico , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Nitrito de Sodio/uso terapéutico , Animales , Cardiotónicos/administración & dosificación , Ecocardiografía , Transporte de Electrón , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Corazón/diagnóstico por imagen , Peróxido de Hidrógeno/antagonistas & inhibidores , Peróxido de Hidrógeno/metabolismo , Ácidos Linoleicos Conjugados/administración & dosificación , Masculino , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/enzimología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/metabolismo , Factores de Acoplamiento de la Fosforilación Oxidativa/metabolismo , Estrés Oxidativo
5.
Neurobiol Dis ; 84: 4-21, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26024962

RESUMEN

Aerobes require oxygen for metabolism and normal free radical formation. As a result, maintaining the redox homeostasis is essential for brain cell survival due to their high metabolic energy requirement to sustain electrochemical gradients, neurotransmitter release, and membrane lipid stability. Further, brain antioxidant levels are limited compared to other organs and less able to compensate for reactive oxygen and nitrogen species (ROS/RNS) generation which contribute oxidative/nitrative stress (OS/NS). Antioxidant treatments such as vitamin E, minocycline, and resveratrol mediate neuroprotection by prolonging the incidence of or reversing OS and NS conditions. Redox imbalance occurs when the antioxidant capacity is overwhelmed, consequently leading to activation of alternate pathways that remain quiescent under normal conditions. If OS/NS fails to lead to adaptation, tissue damage and injury ensue, resulting in cell death and/or disease. The progression of OS/NS-mediated neurodegeneration along with contributions from microglial activation, dopamine metabolism, and diabetes comprise a detailed interconnected pathway. This review proposes a significant role for OS/NS and more specifically, lipid peroxidation (LPO) and other lipid modifications, by triggering microglial activation to elicit a neuroinflammatory state potentiated by diabetes or abnormal dopamine metabolism. Subsequently, sustained stress in the neuroinflammatory state overwhelms cellular defenses and prompts neurotoxicity resulting in the onset or amplification of brain damage.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Estrés Oxidativo/fisiología , Animales , Encéfalo/metabolismo , Humanos
6.
Mech Ageing Dev ; 146-148: 42-52, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25843235

RESUMEN

Though defective genome maintenance and DNA repair have long been known to promote phenotypes of premature aging, the role protein methylation plays in these processes is only now emerging. We have recently identified the first N-terminal methyltransferase, NRMT1, which regulates protein-DNA interactions and is necessary for both accurate mitotic division and nucleotide excision repair. To demonstrate if complete loss of NRMT1 subsequently resulted in developmental or aging phenotypes, we constructed the first NRMT1 knockout (Nrmt1(-/-)) mouse. The majority of these mice die shortly after birth. However, the ones that survive, exhibit decreased body size, female-specific infertility, kyphosis, decreased mitochondrial function, and early-onset liver degeneration; phenotypes characteristic of other mouse models deficient in DNA repair. The livers from Nrmt1(-/-) mice produce less reactive oxygen species (ROS) than wild type controls, and Nrmt1(-/-) mouse embryonic fibroblasts show a decreased capacity for handling oxidative damage. This indicates that decreased mitochondrial function may benefit Nrmt1(-/-) mice and protect them from excess internal ROS and subsequent DNA damage. These studies position the NRMT1 knockout mouse as a useful new system for studying the effects of genomic instability and defective DNA damage repair on organismal and tissue-specific aging.


Asunto(s)
Envejecimiento Prematuro , Reparación del ADN , Metiltransferasas/deficiencia , Envejecimiento Prematuro/enzimología , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/patología , Animales , Femenino , Fibroblastos/enzimología , Fibroblastos/patología , Infertilidad Femenina/enzimología , Infertilidad Femenina/genética , Infertilidad Femenina/patología , Ratones , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo
7.
Free Radic Biol Med ; 72: 66-75, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24721151

RESUMEN

Conjugated linoleic acid (cLA) is a commercially available weight-loss supplement that is not currently regulated by the U.S. FDA. Numerous studies suggest that cLA mediates protection against diseases including cancer, diabetes, atherosclerosis, immune function, and obesity. Based upon these reports, it was hypothesized that supplementation with cLA would improve heart function in aged wild-type (WT) mice. At 10 months of age, mice were treated with cLA, nitrite, or the combination of the two. Echocardiograms revealed that cardiac function was decreased in aged compared to young WT mice, as determined by percentage of fractional shortening. Also, contrary to the hypothesis, mice that received cLA (6-week treatment) had significantly worse cardiac function compared to controls. This effect was attenuated when mice were cotreated with cLA and nitrite. Taken together, these results suggest that cLA-mediated cardiac injury can be circumvented by nitrite supplementation in a murine model of aging.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Ácidos Linoleicos Conjugados/farmacología , Nitratos/farmacología , Función Ventricular Izquierda/efectos de los fármacos , Envejecimiento , Animales , Western Blotting , Bovinos , Humanos , Ratones , Ratones Endogámicos C57BL
8.
PLoS One ; 9(2): e89251, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586632

RESUMEN

Adriamycin (ADR) treatment causes an imbalance in the levels of nitric oxide ((•)NO) and superoxide (O2(•-)) production leading to cardiac injury. Previously we demonstrated that mice lacking inducible nitric oxide synthase (iNOS) have increased oxidative stress and mitochondrial injury. The molecular events leading to increased mitochondrial injury in iNOS deficient mice is unknown. ADR in the absence of iNOS preferentially activates a proapoptotic pathway without a concurrent increase in prosurvival pathways. Treatment with ADR leads to an increase in DNA binding activity of nuclear factor kappa B (NFκB) and p53 in wildtype mice. Following ADR treatment, p53, but not NFκB DNA binding activity, as well as the level of Bax, a p53 target gene, was increased in iNOS (-/-) mice. This apoptotic signaling effect in iNOS (-/-) is alleviated by overexpression of manganese superoxide dismutase (MnSOD). Increases in NFκB and p53 in ADR-treated wildtype mice did not lead to increases in target genes such as MnSOD, bcl-xL, or Bax. Moreover, co-immunoprecipitation analysis revealed that p65, a prominent member of the NFκB family, interacts with p53 in the nucleus. These results suggest that NFκB and p53 may counter act one another's actions in ADR-treated wildtype (WT) mice. Further, these results identify a novel mechanism by which oxidative stress may regulate transcription of proapoptotic genes.


Asunto(s)
Doxorrubicina/farmacología , Lesiones Cardíacas/inducido químicamente , Lesiones Cardíacas/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Factor de Transcripción ReIA/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
9.
Redox Biol ; 2: 1-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24363996

RESUMEN

According to the CDC, the most common type of heart disease is coronary artery disease, which commonly leads to myocardial infarction (MI). Therapeutic approaches to lessen the resulting cardiovascular injury associated with MI are limited. Recently, MicroRNAs (miRNAs) have been shown to act as negative regulators of gene expression by inhibiting mRNA translation and/or stimulating mRNA degradation. A single miRNA can modulate physiological or disease phenotypes by regulating whole functional systems. Importantly, miRNAs can regulate cardiac function, thereby modulating heart muscle contraction, heart growth and morphogenesis. MicroRNA-499 (miRNA-499) is a cardiac-specific miRNA that when elevated causes cardiomyocyte hypertrophy, in turn preventing cardiac dysfunction during MI. Previous studies revealed that combination treatment with conjugated linoleic acid (cLA) and nitrite preserved cardiovascular function in mice. Therefore, it was hypothesized that cLA and nitrite may regulate miRNA-499, thus providing cardiac protection during MI. To test this hypothesis, 12-week old mice were treated with cLA (10 mg/kg/d-via osmotic mini-pump) or cLA and nitrite (50 ppm-drinking water) 3 days prior to MI (ligation of the left anterior descending artery). Echocardiography and pressure-volume (PV)-loop analysis revealed that cLA and nitrite-treated MI mice had improved heart function (10 days following MI) compared to untreated MI mice. Treatment with cLA and nitrite significantly induced levels of miRNA-499 compared to untreated MI mice. In addition, treatment with cLA and nitrite abolished MI-induced protein expression of p53 and dynamin-related protein-1 (DRP-1). Moreover, the antioxidant enzyme expression of heme oxygenase-1 (HO-1) was elevated in MI mice treated with cLA and nitrite compared to untreated MI mice. Confocal imaging on heart tissue confirmed expression the levels of HO-1 and p53. Taken together, these results suggest that therapeutic treatment with cLA and nitrite may provide significant protection during MI through regulation of both cardiac specific miRNA-499 and upregulation of phase 2 antioxidant enzyme expression.


Asunto(s)
Ácidos Linoleicos Conjugados/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Nitritos/uso terapéutico , Sustancias Protectoras/uso terapéutico , Animales , Dinaminas/metabolismo , Ecocardiografía , Corazón/fisiopatología , Hemo-Oxigenasa 1/metabolismo , Hemodinámica , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba
10.
J Biol Chem ; 287(53): 44071-82, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23144452

RESUMEN

The oxidation and nitration of unsaturated fatty acids by oxides of nitrogen yield electrophilic derivatives that can modulate protein function via post-translational protein modifications. The biological mechanisms accounting for fatty acid nitration and the specific structural characteristics of products remain to be defined. Herein, conjugated linoleic acid (CLA) is identified as the primary endogenous substrate for fatty acid nitration in vitro and in vivo, yielding up to 10(5) greater extent of nitration products as compared with bis-allylic linoleic acid. Multiple enzymatic and cellular mechanisms account for CLA nitration, including reactions catalyzed by mitochondria, activated macrophages, and gastric acidification. Nitroalkene derivatives of CLA and their metabolites are detected in the plasma of healthy humans and are increased in tissues undergoing episodes of ischemia reperfusion. Dietary CLA and nitrite supplementation in rodents elevates NO(2)-CLA levels in plasma, urine, and tissues, which in turn induces heme oxygenase-1 (HO-1) expression in the colonic epithelium. These results affirm that metabolic and inflammatory reactions yield electrophilic products that can modulate adaptive cell signaling mechanisms.


Asunto(s)
Ácidos Grasos/metabolismo , Ácido Linoleico/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Animales , Línea Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal
11.
Circ Res ; 107(7): 877-87, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20705923

RESUMEN

RATIONALE: Low-dose acetylsalicylic acid (aspirin) is widely used in the treatment and prevention of vascular atherothrombosis. Cardiovascular doses of aspirin also reduce systemic blood pressure and improve endothelium-dependent vasorelaxation in patients with atherosclerosis or risk factors for atherosclerosis. Aspirin can acetylate proteins, other than its pharmacological target cyclooxygenase, at lysine residues. The role of lysine acetylation in mediating the effects of low-dose aspirin on the endothelium is not known. OBJECTIVE: To determine the role of lysine acetylation of endothelial nitric oxide synthase (eNOS) in the regulation of endothelial NO production by low-dose aspirin and to examine whether the lysine deacetylase histone deacetylase (HDAC)3 antagonizes the effect of low-dose aspirin on endothelial NO production by reversing acetylation of functionally critical eNOS lysine residues. METHODS AND RESULTS: Low concentrations of aspirin induce lysine acetylation of eNOS, stimulating eNOS enzymatic activity and endothelial NO production in a cyclooxygenase-1-independent fashion. Low-dose aspirin in vivo also increases bioavailable vascular NO in an eNOS-dependent and cyclooxygenase-1-independent manner. Low-dose aspirin promotes the binding of eNOS to calmodulin. Lysine 609 in the calmodulin autoinhibitory domain of bovine eNOS mediates aspirin-stimulated binding of eNOS to calmodulin and eNOS-derived NO production. HDAC3 inhibits aspirin-stimulated (1) lysine acetylation of eNOS, (2) eNOS enzymatic activity, (3) eNOS-derived NO, and (4) binding of eNOS to calmodulin. Conversely, downregulation of HDAC3 promotes lysine acetylation of eNOS and endothelial NO generation. CONCLUSIONS: Lysine acetylation of eNOS is a posttranslational protein modification supporting low-dose aspirin-induced vasoprotection. HDAC3, by deacetylating aspirin-acetylated eNOS, antagonizes aspirin-stimulated endothelial production of NO.


Asunto(s)
Aspirina/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Histona Desacetilasas/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Acetilación/efectos de los fármacos , Animales , Calmodulina/metabolismo , Bovinos , Línea Celular , Relación Dosis-Respuesta a Droga , Células Endoteliales/citología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Humanos , Riñón/citología , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Óxido Nítrico Sintasa de Tipo III/genética , Inhibidores de Agregación Plaquetaria/farmacología , Procesamiento Proteico-Postraduccional/fisiología , Venas Umbilicales/citología
12.
Circ Res ; 107(4): 540-8, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20558825

RESUMEN

RATIONALE: Nitro-oleic acid (OA-NO(2)) is a bioactive, nitric-oxide derived fatty acid with physiologically relevant vasculoprotective properties in vivo. OA-NO(2) exerts cell signaling actions as a result of its strong electrophilic nature and mediates pleiotropic cell responses in the vasculature. OBJECTIVE: The present study sought to investigate the protective role of OA-NO(2) in angiotensin (Ang) II-induced hypertension. METHODS AND RESULTS: We show that systemic administration of OA-NO(2) results in a sustained reduction of Ang II-induced hypertension in mice and exerts a significant blood pressure lowering effect on preexisting hypertension established by Ang II infusion. OA-NO(2) significantly inhibits Ang II contractile response as compared to oleic acid (OA) in mesenteric vessels. The improved vasoconstriction is specific for the Ang II type 1 receptor (AT(1)R)-mediated signaling because vascular contraction by other G-protein-coupled receptors is not altered in response to OA-NO(2) treatment. From the mechanistic viewpoint, OA-NO(2) lowers Ang II-induced hypertension independently of peroxisome proliferation-activated receptor (PPAR)gamma activation. Rather, OA-NO(2), but not OA, specifically binds to the AT(1)R, reduces heterotrimeric G-protein coupling, and inhibits IP(3) (inositol-1,4,5-trisphosphate) and calcium mobilization, without inhibiting Ang II binding to the receptor. CONCLUSIONS: These results demonstrate that OA-NO(2) diminishes the pressor response to Ang II and inhibits AT(1)R-dependent vasoconstriction, revealing OA-NO(2) as a novel antagonist of Ang II-induced hypertension.


Asunto(s)
Angiotensina II/antagonistas & inhibidores , Angiotensina II/toxicidad , Hipertensión/inducido químicamente , Hipertensión/prevención & control , Nitrocompuestos/uso terapéutico , Ácido Oléico/uso terapéutico , Angiotensina II/fisiología , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Hipertensión/fisiopatología , Ácidos Linoleicos/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ácidos Oléicos/uso terapéutico , Ratas , Ratas Sprague-Dawley
13.
Nat Chem Biol ; 6(6): 433-41, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20436486

RESUMEN

Electrophilic fatty acids are generated during inflammation by non-enzymatic reactions and can modulate inflammatory responses. We used a new mass spectrometry-based electrophile capture strategy to reveal the formation of electrophilic oxo-derivatives (EFOX) from the omega-3 fatty acids docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). These EFOX were generated by a cyclooxygenase-2 (COX-2)-catalyzed mechanism in activated macrophages. Modulation of COX-2 activity by aspirin increased the rate of EFOX production and their intracellular levels. Owing to their electrophilic nature, EFOX adducted to cysteine and histidine residues of proteins and activated Nrf2-dependent anti-oxidant gene expression. We confirmed the anti-inflammatory nature of DHA- and DPA-derived EFOX by showing that they can act as peroxisome proliferator-activated receptor-gamma (PPAR gamma) agonists and inhibit pro-inflammatory cytokine and nitric oxide production, all within biological concentration ranges. These data support the idea that EFOX are signaling mediators that transduce the beneficial clinical effects of omega-3 fatty acids, COX-2 and aspirin.


Asunto(s)
Antiinflamatorios/síntesis química , Ciclooxigenasa 2/metabolismo , Ácidos Grasos Omega-3/metabolismo , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Borohidruros/farmacología , Línea Celular , Membrana Celular/metabolismo , Ácidos Docosahexaenoicos/química , Ácidos Docosahexaenoicos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/farmacología , Glutatión/metabolismo , Humanos , Hidroxilación , Interleucina-10/genética , Interleucina-6/genética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , PPAR gamma/metabolismo , PPAR gamma/farmacología
14.
Arterioscler Thromb Vasc Biol ; 30(5): 938-45, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20167658

RESUMEN

OBJECTIVE: Inflammatory processes and foam cell formation are key determinants in the initiation and progression of atherosclerosis. Electrophilic nitro-fatty acids, byproducts of nitric oxide- and nitrite-dependent redox reactions of unsaturated fatty acids, exhibit antiinflammatory signaling actions in inflammatory and vascular cell model systems. The in vivo action of nitro-fatty acids in chronic inflammatory processes such as atherosclerosis remains to be elucidated. METHODS AND RESULTS: Herein, we demonstrate that subcutaneously administered 9- and 10-nitro-octadecenoic acid (nitro-oleic acid) potently reduced atherosclerotic lesion formation in apolipoprotein E-deficient mice. Nitro-fatty acids did not modulate serum lipoprotein profiles. Immunostaining and gene expression analyses revealed that nitro-oleic acid attenuated lesion formation by suppressing tissue oxidant generation, inhibiting adhesion molecule expression, and decreasing vessel wall infiltration of inflammatory cells. In addition, nitro-oleic acid reduced foam cell formation by attenuating oxidized low-density lipoprotein-induced phosphorylation of signal transducer and activator of transcription-1, a transcription factor linked to foam cell formation in atherosclerotic plaques. Atherosclerotic lesions of nitro-oleic acid-treated animals also showed an increased content of collagen and alpha-smooth muscle actin, suggesting conferral of higher plaque stability. CONCLUSION: These results reveal the antiatherogenic actions of electrophilic nitro-fatty acids in a murine model of atherosclerosis.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Enfermedades de la Aorta/prevención & control , Apolipoproteínas E/deficiencia , Aterosclerosis/prevención & control , Ácidos Oléicos/farmacología , Actinas/metabolismo , Animales , Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Quimiocina CCL2/metabolismo , Colágeno/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Inyecciones Subcutáneas , Lipoproteínas LDL/metabolismo , Masculino , Ratones , Ratones Noqueados , Ácidos Oléicos/administración & dosificación , Oxidantes/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/efectos de los fármacos
15.
J Biol Chem ; 285(16): 12321-33, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20097754

RESUMEN

The peroxisome proliferator-activated receptor-gamma (PPARgamma) binds diverse ligands to transcriptionally regulate metabolism and inflammation. Activators of PPARgamma include lipids and anti-hyperglycemic drugs such as thiazolidinediones (TZDs). Recently, TZDs have raised concern after being linked with increased risk of peripheral edema, weight gain, and adverse cardiovascular events. Most reported endogenous PPARgamma ligands are intermediates of lipid metabolism and oxidation that bind PPARgamma with very low affinity. In contrast, nitro derivatives of unsaturated fatty acids (NO(2)-FA) are endogenous products of nitric oxide ((*)NO) and nitrite (NO(2)(-))-mediated redox reactions that activate PPARgamma at nanomolar concentrations. We report that NO(2)-FA act as partial agonists of PPARgamma and covalently bind PPARgamma at Cys-285 via Michael addition. NO(2)-FA show selective PPARgamma modulator characteristics by inducing coregulator protein interactions, PPARgamma-dependent expression of key target genes, and lipid accumulation is distinctively different from responses induced by the TZD rosiglitazone. Administration of this class of signaling mediators to ob/ob mice revealed that NO(2)-FA lower insulin and glucose levels without inducing adverse side effects such as the increased weight gain induced by TZDs.


Asunto(s)
Ácidos Grasos Insaturados/farmacología , Hipoglucemiantes/farmacología , Nitrocompuestos/farmacología , PPAR gamma/agonistas , PPAR gamma/metabolismo , Células 3T3-L1 , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Glucemia/metabolismo , Línea Celular , Cartilla de ADN/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Ácidos Grasos Insaturados/química , Humanos , Hipoglucemiantes/química , Técnicas In Vitro , Insulina/sangre , Ligandos , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Nitrocompuestos/química , Ácido Oléico/química , Ácido Oléico/farmacología , PPAR gamma/química , PPAR gamma/genética , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rosiglitazona , Transducción de Señal , Espectrometría de Masas en Tándem , Tiazolidinedionas/farmacología
16.
Free Radic Biol Med ; 48(4): 499-505, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19932165

RESUMEN

Nitric oxide and its metabolites undergo nitration reactions with unsaturated fatty acids during oxidative inflammatory conditions, forming electrophilic nitro-fatty acid derivatives. These endogenous electrophilic mediators activate anti-inflammatory signaling reactions, serving as high-affinity ligands for peroxisome proliferator-activated receptor gamma (PPARgamma). Here we examined the therapeutic effects of 9- or 10-nitro-octadecenoic oleic acid (OA-NO(2)) and native oleic acid (OA) in a mouse model of colitis. OA-NO(2) reduced the disease activity index and completely prevented dextran sulfate sodium-induced colon shortening and the increase in colonic p65 expression. Increased PPARgamma expression was observed in colon samples as well as in cells after OA-NO(2) administration, whereas no effect was seen with OA. This induction of PPARgamma expression was completely abolished by the PPARgamma antagonist GW9662. 5-Aminosalicylic acid, an anti-inflammatory drug routinely used in the management of inflammatory bowel disease, also increased PPARgamma expression but to a lesser extent. Altogether, these findings demonstrate that administration of OA-NO(2) attenuates colonic inflammation and improves clinical symptoms in experimental inflammatory bowel disease. This protection involves activation of colonic PPARgamma.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , PPAR gamma/metabolismo , Regulación hacia Arriba , Animales , Técnicas de Cultivo de Célula/métodos , Ácidos Grasos/metabolismo , Femenino , Radicales Libres , Mesalamina/farmacología , Ratones , Ratones Endogámicos BALB C , Modelos Biológicos , Óxido Nítrico/metabolismo , Ácido Oléico/metabolismo
17.
Cardiovasc Res ; 85(1): 155-66, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19666678

RESUMEN

AIMS: Nitrated fatty acids (NO(2)-FA) have been identified as endogenous anti-inflammatory signalling mediators generated by oxidative inflammatory reactions. Herein the in vivo generation of nitro-oleic acid (OA-NO(2)) and nitro-linoleic acid (LNO(2)) was measured in a murine model of myocardial ischaemia and reperfusion (I/R) and the effect of exogenous administration of OA-NO(2) on I/R injury was evaluated. METHODS AND RESULTS: In C57/BL6 mice subjected to 30 min of coronary artery ligation, endogenous OA-NO(2) and LNO(2) formation was observed after 30 min of reperfusion, whereas no NO(2)-FA were detected in sham-operated mice and mice with myocardial infarction without reperfusion. Exogenous administration of 20 nmol/g body weight OA-NO(2) during the ischaemic episode induced profound protection against I/R injury with a 46% reduction in infarct size (normalized to area at risk) and a marked preservation of left ventricular function as assessed by transthoracic echocardiography, compared with vehicle-treated mice. Administration of OA-NO(2) inhibited activation of the p65 subunit of nuclear factor kappaB (NFkappaB) in I/R tissue. Experiments using the NFkappaB inhibitor pyrrolidinedithiocarbamate also support that protection lent by OA-NO(2) was in part mediated by inhibition of NFkappaB. OA-NO(2) inhibition of NFkappaB activation was accompanied by suppression of downstream intercellular adhesion molecule 1 and monocyte chemotactic protein 1 expression, neutrophil infiltration, and myocyte apoptosis. CONCLUSION: This study reveals the de novo generation of fatty acid nitration products in vivo and reveals the anti-inflammatory and potential therapeutic actions of OA-NO(2) in myocardial I/R injury.


Asunto(s)
Ácidos Grasos/metabolismo , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Óxido Nítrico/metabolismo , Alquilación , Animales , Apoptosis , Modelos Animales de Enfermedad , Ecocardiografía , Inflamación/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Isquemia Miocárdica/patología , Infiltración Neutrófila , Prolina/análogos & derivados , Prolina/farmacología , Tiocarbamatos/farmacología , Factor de Transcripción ReIA/metabolismo
18.
Free Radic Biol Med ; 48(2): 230-9, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19857569

RESUMEN

Reactive oxygen species mediate a decrease in nitric oxide (NO) bioavailability and endothelial dysfunction, with secondary oxidized and nitrated by-products of these reactions contributing to the pathogenesis of numerous vascular diseases. While oxidized lipids and lipoproteins exacerbate inflammatory reactions in the vasculature, in stark contrast the nitration of polyunsaturated fatty acids and complex lipids yields electrophilic products that exhibit pluripotent anti-inflammatory signaling capabilities acting via both cGMP-dependent and -independent mechanisms. Herein we report that nitro-oleic acid (OA-NO(2)) treatment increases expression of endothelial nitric oxide synthase (eNOS) and heme oxygenase 1 (HO-1) in the vasculature, thus transducing vascular protective effects associated with enhanced NO production. Administration of OA-NO(2) via osmotic pump results in a significant increase in eNOS and HO-1 mRNA in mouse aortas. Moreover, HPLC-MS/MS analysis showed that NO(2)-FAs are rapidly metabolized in cultured endothelial cells (ECs) and treatment with NO(2)-FAs stimulated the phosphorylation of eNOS at Ser(1179). These posttranslational modifications of eNOS, in concert with elevated eNOS gene expression, contributed to an increase in endothelial NO production. In aggregate, OA-NO(2)-induced eNOS and HO-1 expression by vascular cells can induce beneficial effects on endothelial function and provide a new strategy for treating various vascular inflammatory and hypertensive disorders.


Asunto(s)
Aorta Torácica/metabolismo , Endotelio Vascular/metabolismo , Hemo-Oxigenasa 1/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Nitrocompuestos/farmacología , Ácido Oléico/farmacología , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/patología , Bovinos , Células Cultivadas , Vasos Coronarios/patología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Activación Enzimática/efectos de los fármacos , Hemo-Oxigenasa 1/genética , Humanos , Hipertensión , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III/genética , Nitrocompuestos/administración & dosificación , Nitrocompuestos/química , Ácido Oléico/administración & dosificación , Ácido Oléico/química , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Enfermedades Vasculares
19.
Circ Res ; 105(10): 965-72, 2009 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-19797175

RESUMEN

RATIONALE: Fatty acid nitroalkenes are endogenously generated electrophilic byproducts of nitric oxide and nitrite-dependent oxidative inflammatory reactions. Existing evidence indicates nitroalkenes support posttranslational protein modifications and transcriptional activation that promote the resolution of inflammation. OBJECTIVE: The aim of this study was to assess whether in vivo administration of a synthetic nitroalkene could elicit antiinflammatory actions in vivo using a murine model of vascular injury. METHODS AND RESULTS: The in vivo administration (21 days) of nitro-oleic acid (OA-NO(2)) inhibited neointimal hyperplasia after wire injury of the femoral artery in a murine model (OA-NO(2) treatment resulted in reduced intimal area and intima to media ratio versus vehicle- or oleic acid (OA)-treated animals,P<0.0001). Increased heme oxygenase (HO)-1 expression accounted for much of the vascular protection induced by OA-NO(2) in both cultured aortic smooth muscle cells and in vivo. Inhibition of HO by Sn(IV)-protoporphyrin or HO-1 small interfering RNA reversed OA-NO(2)-induced inhibition of platelet-derived growth factor-stimulated rat aortic smooth muscle cell migration. The upregulation of HO-1 expression also accounted for the antistenotic actions of OA-NO(2) in vivo, because inhibition of neointimal hyperplasia following femoral artery injury was abolished in HO-1(-/-) mice (OA-NO(2)-treated wild-type versus HO-1(-/-) mice, P=0.016). CONCLUSIONS: In summary, electrophilic nitro-fatty acids induce salutary gene expression and cell functional responses that are manifested by a clinically significant outcome, inhibition of neointimal hyperplasia induced by arterial injury.


Asunto(s)
Arteria Femoral/enzimología , Arteria Femoral/lesiones , Hemo Oxigenasa (Desciclizante)/biosíntesis , Nitrocompuestos/farmacología , Ácidos Oléicos/farmacología , Túnica Íntima/enzimología , Animales , Movimiento Celular/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Inflamación/metabolismo , Ratones , Ratones Noqueados , Óxido Nítrico/metabolismo , Nitrocompuestos/metabolismo , Ácidos Oléicos/metabolismo , Oxidación-Reducción/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/farmacología , Ratas , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...