Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 758: 143686, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33279198

RESUMEN

Monomethyl mercury (MeHg+) from the diet can cause mild to severe neurotoxicosis in fish-eating mammals. Chronic and low-level in utero exposure also can be neurotoxic, as documented in laboratory animal studies and epidemiologic investigations. In free-ranging animals, it is challenging to study low-level exposure related neurotoxicosis, and few studies have investigated the relationship between mercury (Hg) and adverse outcomes in wild populations. Relative to Hg concentrations on admission we evaluated different types of behaviors for 267 Pacific harbor seal (HS; Phoca vitulina richardii) pups at The Marine Mammal Center from 2015 to 2019 during rehabilitation after stranding and maternal separation. Admitted HS pups underwent a clinical exam; including sex and weight determination, and hair (partly lanugo grown in utero) and blood samples were collected for total Hg concentration ([THg]) determination. All pups were monitored weekly (behavior assessments included response to tactile stimulation, movement, swimming, interactions with other seals, hand feeding, and feeding independently), and days in rehabilitation and survival were recorded. There was a significant negative correlation between [THg] and responses to tactile stimulation and movements, measured in both hair and whole blood (p < 0.05). This relationship was found both during the intensive care unit (ICU) stage, and during the pool stage of rehabilitation. Additionally, there was a significant association between greater [THg] and number of days spent in rehabilitation, although there was no relationship between [THg] and survival. There was a significant sex difference, with greater [THg] in female pups, which contrasts with previously published findings in juvenile and adult harbor seals. Our findings support small, but significant associations between gestational THg exposure and clinical effects for tactile sensory response and movement, and longer rehabilitation durations for HS pups, although there was considerable variability among animals.


Asunto(s)
Mercurio , Phoca , Contaminantes Químicos del Agua , Animales , California , Femenino , Masculino , Privación Materna , Mercurio/análisis , Contaminantes Químicos del Agua/análisis
2.
Comp Med ; 69(4): 270-275, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31387667

RESUMEN

Veronaea botryosa is a ubiquitous, dematiaceous mold capable of causing cutaneous and subcutaneous lesions in humans. In the last decade, V. botryosa has been associated with emergent systemic fungal infections in aquatic animals, including cultured sturgeon (Acipenser spp.), captive amphibians, and wild reptiles. Recently, repetitive extragenic palindromic PCR (rep-PCR) fingerprinting has demonstrated intraspecific variability among V. botryosa isolates from different clinically affected hosts and geographic regions. However, little is known regarding the pathogenic potential of the different genetic clades, and no mammalian model currently exists to investigate V. botryosa phaeohyphomycosis. In this study, we inoculated immunocompetent heterozygotic (nu/+) and immunodeficient homozygotic (nu/nu) Hsd:Athymic Nude-Fox1nu mice subcutaneously or through orogastric gavage with 1 of 3 representative V. botryosa strains that had been recovered from white sturgeon (Acipenser transmontanus), green sea turtle (Chelonia mydas), and human hosts and typed by using rep-PCR analysis. Daily mortality and morbidity were recorded, and dissemination of the fungus was investigated through culture of splenic samples and histologic analysis of the injection site, regional lymph nodes, salivary gland, spleen, liver, mesenteric lymph node, and gastrointestinal tract. No differences in survival, fungal burden, or dissemination were observed between fungal strains, routes of inoculation, or host immune status. Fungal infection was observed after subcutaneous inoculation only, was localized to the inoculation site, and was identified in both nu/nu and nu/+ mice. Fungal strain variability was not associated with virulence in a murine model of infection, and this novel mouse model of V. botryosa phaeohyphomycosis recapitulates the human clinical condition.


Asunto(s)
Ascomicetos/aislamiento & purificación , Dermatomicosis/microbiología , Modelos Animales de Enfermedad , Feohifomicosis/microbiología , Animales , Ascomicetos/patogenicidad , Dermatomicosis/patología , Humanos , Ratones , Ratones Desnudos , Feohifomicosis/patología
3.
Vet Res ; 49(1): 11, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29391073

RESUMEN

Veronaea botryosa is a melanized mold and cause of systemic fungal infections in cultured sturgeon (Acipenser spp.). Mortality in adult female sturgeon caused by this emergent pathogen results in significant economic losses for the caviar industry. Little is known regarding environmental conditions conducive to V. botryosa infection. This study evaluated the effect of temperature on V. botryosa infectivity and dissemination following intramuscular injection challenge of white sturgeon maintained at 13 or 18 °C for 40 days. Daily mortality was recorded and persistence of the fungus in the livers of moribund and surviving fish was investigated using culture and histopathological analysis. Fish maintained at 18 °C developed systemic phaeohyphomycosis and had significantly greater mortality than controls and fish maintained at 13 °C (p < 0.05). Challenged fish, regardless of temperature, exhibited lesions in multiple organs. However, muscle lesions, angioinvasion, and systemic dissemination were more severe and widespread in fish challenged at the higher temperature. In vitro cytotoxicity of V. botryosa was evaluated in white sturgeon skin (WSSK-1) and epithelioma papulosum cyprini (EPC) cell lines inoculated at spore:cell ratios of 1:10, 1:1 and 10:1, then incubated 15, 20 and 25 °C. Cytotoxicity, as indicated by quantifying the release of lactate dehydrogenase into culture supernatants, increased with increasing spore dose and incubation temperature in both fish cell lines. Findings suggest that temperature significantly influences the development of systemic V. botryosa infection in white sturgeon and that WSSK-1 and EPC cells are suitable in vitro models for the study of host-pathogen interactions between V. botryosa and fish epithelial cells.


Asunto(s)
Ascomicetos/fisiología , Enfermedades de los Peces/microbiología , Micosis/veterinaria , Animales , Línea Celular , Femenino , Peces , Micosis/microbiología , Distribución Aleatoria , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...