Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Pharm Sci ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39173744

RESUMEN

Deep infection is the second most common complication of arthroplasty following loosening of the implant. Antibiotic-loaded bone cements (ALBCs) and high concentrations of systemic broad-spectrum antibiotics are commonly used to prevent infections following injury and surgery. However, clinical data fails to show that ALBCs are effective against deep infection, and negative side effects can result following prolonged administration of antibiotics. Additionally, the rise of multidrug resistant (MDR) bacteria provides an urgent need for alternatives to broad-spectrum antibiotics. Phage therapy, or the use of bacteriophages (viruses that infect bacteria) to target pathogenic bacteria, might offer a safe alternative to combat MDR bacteria. Application of phage therapy in the setting of deep infections requires formulation strategies that would stabilize bacteriophage against chemical and thermal stress during bone-cement polymerization, that maintain bacteriophage activity for weeks or months at physiological temperatures, and that allow for sustained release of phage to combat slow-growing, persistent bacteria. Here, we demonstrate the formulation of three phages that target diverse bacterial pathogens, which includes spray-drying of the particles for enhanced thermal stability at 37 °C and above. Additionally, we use atomic layer deposition (ALD) to coat spray-dried powders with alumina to allow for delayed release of phage from the dry formulations, and potentially protect phage against chemical damage during bone cement polymerization. Together, these findings present a strategy to formulate phages that possess thermal stability and sustained release properties for use in deep infections.

2.
Implement Sci ; 19(1): 60, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148094

RESUMEN

BACKGROUND: Asthma is a leading cause of children's hospitalizations, emergency department visits, and missed school days. Our school-based asthma intervention has reduced asthma exacerbations for children experiencing health disparities in the Denver Metropolitan Area, due partly to addressing care coordination for asthma and social determinants of health (SDOH), such as access to healthcare and medications. Limited dissemination of school-based asthma programs has occurred in other metropolitan and rural areas of Colorado. We formed and engaged community advisory boards in socioeconomically diverse regions of Colorado to develop two implementation strategy packages for delivering our school-based asthma intervention - now termed "Better Asthma Control for Kids (BACK)" - with tailoring to regional priorities, needs and resources. METHODS: In this proposed type 2 hybrid implementation-effectiveness trial, where the primary goal is equitable reach to families to reduce asthma disparities, we will compare two different packages of implementation strategies to deliver BACK across four Colorado regions. The two implementation packages to be compared are: 1) standard set of implementation strategies including Tailor and Adapt to context, Facilitation and Training termed, BACK-Standard (BACK-S); 2) BACK-S plus an enhanced implementation strategy, that incorporates network weaving with community partners and consumer engagement with school families, termed BACK-Enhanced (BACK-E). Our evaluation will be guided by the Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) framework, including its Pragmatic Robust Implementation Sustainability Model (PRISM) determinants of implementation outcomes. Our central hypothesis is that our BACK-E implementation strategy will have significantly greater reach to eligible children/families than BACK-S (primary outcome) and that both BACK-E and BACK-S groups will have significantly reduced asthma exacerbation rates ("attacks") and improved asthma control as compared to usual care. DISCUSSION: We expect both the BACK-S and BACK-E strategy packages will accelerate dissemination of our BACK program across the state - the comparative impact of BACK-S vs. BACK-E on reach and other RE-AIM outcomes may inform strategy selection for scaling BACK and other effective school-based programs to address chronic illness disparities. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT06003569, registered on August 22, 2023, https://classic. CLINICALTRIALS: gov/ct2/show/NCT06003569 .


Asunto(s)
Asma , Servicios de Salud Escolar , Humanos , Asma/terapia , Asma/prevención & control , Niño , Colorado , Servicios de Salud Escolar/organización & administración , Adolescente , Poblaciones Vulnerables , Ciencia de la Implementación , Femenino
3.
J Pharm Sci ; 113(8): 2072-2080, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38643898

RESUMEN

Enveloped viruses are attractive candidates for use as gene- and immunotherapeutic agents due to their efficacy at infecting host cells and delivering genetic information. They have also been used in vaccines as potent antigens to generate strong immune responses, often requiring fewer doses than other vaccine platforms as well as eliminating the need for adjuvants. However, virus instability in liquid formulations may limit their shelf life and require that these products be transported and stored under stringently controlled temperature conditions, contributing to high cost and limiting patient access. In this work, spray-drying and lyophilization were used to embed an infectious enveloped virus within dry, glassy polysaccharide matrices. No loss of viral titer was observed following either spray-drying (at multiple drying gas temperatures) or lyophilization. Furthermore, viruses embedded in the glassy formulations showed enhanced thermal stability, retaining infectivity after exposure to elevated temperatures as high as 85 °C for up to one hour, and for up to 10 weeks at temperatures as high as 30 °C. In comparison, viruses in liquid formulations lost infectivity within an hour at temperatures above 40 °C, or after incubation at 25 °C for longer periods of time.


Asunto(s)
Liofilización , Secado por Pulverización , Liofilización/métodos , Animales , Estabilidad de Medicamentos , Temperatura , Humanos
4.
Colloids Surf B Biointerfaces ; 233: 113661, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38006709

RESUMEN

Identification of the mechanisms by which viruses lose activity during droplet formation and drying is of great importance to understanding the spread of infectious diseases by virus-containing respiratory droplets and to developing thermally stable spray dried live or inactivated viral vaccines. In this study, we exposed suspensions of baculovirus, an enveloped virus, to isolated mechanical stresses similar to those experienced during respiratory droplet formation and spray drying: fluid shear forces, osmotic pressure forces, and surface tension forces at interfaces. DNA released from mechanically stressed virions was measured by SYBR Gold staining to quantify viral capsid disruption. Theoretical estimates of the force exerted by fluid shear, osmotic pressures and interfacial tension forces during respiratory droplet formation and spray drying suggest that osmotic and interfacial stresses have greater potential to mechanically destabilize viral capsids than forces associated with shear stresses. Experimental results confirmed that rapid changes in osmotic pressure, such as those associated with drying of virus-containing droplets, caused significant viral capsid disruption, whereas the effect of fluid shear forces was negligible. Surface tension forces were sufficient to provoke DNA release from virions adsorbed at air-water interfaces, but the extent of this disruption was limited by the time required for virions to diffuse to interfaces. These results demonstrate the effect of isolated mechanical stresses on virus particles during droplet formation and drying.


Asunto(s)
Cápside , Virión , Estrés Mecánico , Tensión Superficial , ADN
5.
Mikrochim Acta ; 187(8): 440, 2020 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-32653955

RESUMEN

A simple binary copper selenide, CuSe nanostructure, has been investigated as electrochemical sensor for dopamine detection. The hydrothermally synthesized and electrodeposited CuSe nanostructures showed high sensitivity for dopamine detection with low limit of detection (LOD). A sensitivity of 26 µA/µM.cm2 was obtained with this electrochemical sensor which is ideal to detect even small fluctuations in the transient dopamine concentration. Apart from high sensitivity and low LOD, the dopamine oxidation on the catalyst surface also occurred at a low applied potential (< 0.18 V vs Ag|AgCl), thereby significantly increasing selectivity of the process specifically with respect to ascorbic and uric acids, which are considered to be the most prominent interferents for dopamine detection. Electrochemical redox tunability of the catalytic Cu center along with low coordination geometry is believed to enhance the rate of dopamine attachment and oxidation on the catalyst surface thereby reducing the applied potential. The presence of Cu also increases conductivity of the catalyst composite which further improves the charge transfer thus increasing the sensitivity of the device. This is the first report of electrochemical dopamine sensing with a simple binary selenide comprising earth-abundant elements and can have large significance in designing efficient sensors that can be transformative for understanding neurodegenerative diseases further. Graphical abstract.


Asunto(s)
Dopamina/sangre , Dopamina/orina , Nanopartículas del Metal/química , Compuestos de Selenio/química , Catálisis , Dopamina/química , Técnicas Electroquímicas/métodos , Humanos , Límite de Detección , Oxidación-Reducción , Reproducibilidad de los Resultados
6.
Mater Res Express ; 6(12)2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33604057

RESUMEN

Much attention has focused recently on utilizing components of the extracellular matrix (ECM) as natural building blocks for a variety of tissue engineering applications and regenerative medicine therapies. Consequently, new fabrication methods are being sought to enable molecular control over the structural characteristics of ECM molecules in order to improve their biological function. Exposing soluble collagen to acoustic forces associated with ultrasound propagation produces localized variations in collagen microfiber organization that in turn, promote cell behaviors essential for tissue regeneration, including cell migration and matrix remodeling. In the present study, mechanisms by which ultrasound interacts with polymerizing collagen to produce functional changes in collagen microstructure were investigated. The rate of collagen polymerization was manipulated by adjusting the pH of collagen solutions and the temperature at which gels were polymerized. Results demonstrate that the phase transition of type I collagen from fluid to gel triggered a simultaneous increase in acoustic absorption. This phase transition of collagen involves the lateral growth of early-stage collagen microfibrils and importantly, corresponded to a defined period of time during which exposure to ultrasound introduced both structural and functional changes to the resultant collagen hydrogels. Together, these experiments isolated a critical window in the collagen fiber assembly process during which mechanical forces associated with ultrasound propagation are effective in producing structural changes that underlie the ability of acoustically-modified collagen hydrogels to stimulate cell migration. These results demonstrate that changes in material properties associated with collagen polymerization are a fundamental component of the mechanism by which acoustic forces modify collagen biomaterials to enhance biological function.

7.
J Nanobiotechnology ; 16(1): 80, 2018 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-30316298

RESUMEN

BACKGROUND: Engineered inorganic nanoparticles (NPs) are essential components in the development of nanotechnologies. For applications in nanomedicine, particles need to be functionalized to ensure a good dispersibility in biological fluids. In many cases however, functionalization is not sufficient: the particles become either coated by a corona of serum proteins or precipitate out of the solvent. We show that by changing the coating of magnetic iron oxide NPs using poly-L-lysine (PLL) polymer the colloidal stability of the dispersion is improved in aqueous solutions including water, phosphate buffered saline (PBS), PBS with 10% fetal bovine serum (FBS) and cell culture medium, and the internalization of the NPs toward living mammalian cells is profoundly affected. METHODS: A multifunctional magnetic NP is designed to perform a near-infrared (NIR)-responsive remote control photothermal ablation for the treatment of breast cancer. In contrast to the previously reported studies of gold (Au) magnetic (Fe3O4) core-shell NPs, a Janus-like nanostructure is synthesized with Fe3O4 NPs decorated with Au resulting in an approximate size of 60 nm mean diameter. The surface of trisoctahedral Au-Fe3O4 NPs was coated with a positively charged polymer, PLL to deliver the NPs inside cells. The PLL-Au-Fe3O4 NPs were characterized by transmission electron microscopy (TEM), XRD, FT-IR and dynamic light scattering (DLS). The unique properties of both Au surface plasmon resonance and superparamagnetic moment result in a multimodal platform for use as a nanothermal ablator and also as a magnetic resonance imaging (MRI) contrast agent, respectively. Taking advantage of the photothermal therapy, PLL-Au-Fe3O4 NPs were incubated with BT-474 and MDA-MB-231 breast cancer cells, investigated for the cytotoxicity and intracellular uptake, and remotely triggered by a NIR laser of ~ 808 nm (1 W/cm2 for 10 min). RESULTS: The PLL coating increased the colloidal stability and robustness of Au-Fe3O4 NPs (PLL-Au-Fe3O4) in biological media including cell culture medium, PBS and PBS with 10% fetal bovine serum. It is revealed that no significant (< 10%) cytotoxicity was induced by PLL-Au-Fe3O4 NPs itself in BT-474 and MDA-MB-231 cells at concentrations up to 100 µg/ml. Brightfield microscopy, fluorescence microscopy and TEM showed significant uptake of PLL-Au-Fe3O4 NPs by BT-474 and MDA-MB-231 cells. The cells exhibited 40 and 60% inhibition in BT-474 and MDA-MB-231 cell growth, respectively following the internalized NPs were triggered by a photothermal laser using 100 µg/ml PLL-Au-Fe3O4 NPs. The control cells treated with NPs but without laser showed < 10% cell death compared to no laser treatment control CONCLUSION: Combined together, the results demonstrate a new polymer gold superparamagnetic nanostructure that integrates both diagnostics function and photothermal ablation of tumors into a single multimodal nanoplatform exhibiting a significant cancer cell death.


Asunto(s)
Compuestos Férricos/química , Oro/química , Nanopartículas de Magnetita/química , Polímeros/química , Nanomedicina Teranóstica/métodos , Muerte Celular , Línea Celular Tumoral , Fluorescencia , Humanos , Hipertermia Inducida , Nanopartículas de Magnetita/ultraestructura , Fototerapia , Polilisina/síntesis química , Polilisina/química , Electricidad Estática , Temperatura , Difracción de Rayos X
8.
mBio ; 7(3)2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27353756

RESUMEN

UNLABELLED: Carbapenem-resistant Klebsiella pneumoniae strains are formidable hospital pathogens that pose a serious threat to patients around the globe due to a rising incidence in health care facilities, high mortality rates associated with infection, and potential to spread antibiotic resistance to other bacterial species, such as Escherichia coli Over 6 months in 2011, 17 patients at the National Institutes of Health (NIH) Clinical Center became colonized with a highly virulent, transmissible carbapenem-resistant strain of K. pneumoniae Our real-time genomic sequencing tracked patient-to-patient routes of transmission and informed epidemiologists' actions to monitor and control this outbreak. Two of these patients remained colonized with carbapenemase-producing organisms for at least 2 to 4 years, providing the opportunity to undertake a focused genomic study of long-term colonization with antibiotic-resistant bacteria. Whole-genome sequencing studies shed light on the underlying complex microbial colonization, including mixed or evolving bacterial populations and gain or loss of plasmids. Isolates from NIH patient 15 showed complex plasmid rearrangements, leaving the chromosome and the blaKPC-carrying plasmid intact but rearranging the two other plasmids of this outbreak strain. NIH patient 16 has shown continuous colonization with blaKPC-positive organisms across multiple time points spanning 2011 to 2015. Genomic studies defined a complex pattern of succession and plasmid transmission across two different K. pneumoniae sequence types and an E. coli isolate. These findings demonstrate the utility of genomic methods for understanding strain succession, genome plasticity, and long-term carriage of antibiotic-resistant organisms. IMPORTANCE: In 2011, the NIH Clinical Center had a nosocomial outbreak involving 19 patients who became colonized or infected with blaKPC-positive Klebsiella pneumoniae Patients who have intestinal colonization with blaKPC-positive K. pneumoniae are at risk for developing infections that are difficult or nearly impossible to treat with existing antibiotic options. Two of those patients remained colonized with blaKPC-positive Klebsiella pneumoniae for over a year, leading to the initiation of a detailed genomic analysis exploring mixed colonization, plasmid recombination, and plasmid diversification. Whole-genome sequence analysis identified a variety of changes, both subtle and large, in the blaKPC-positive organisms. Long-term colonization of patients with blaKPC-positive Klebsiella pneumoniae creates new opportunities for horizontal gene transfer of plasmids encoding antibiotic resistance genes and poses complications for the delivery of health care.


Asunto(s)
Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Genoma Bacteriano , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/crecimiento & desarrollo , Klebsiella pneumoniae/genética , Plásmidos , beta-Lactamasas/genética , Proteínas Bacterianas/biosíntesis , Infección Hospitalaria , ADN Bacteriano/genética , Brotes de Enfermedades , Electroforesis en Gel de Campo Pulsado , Escherichia coli , Femenino , Transferencia de Gen Horizontal , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Infecciones por Klebsiella/transmisión , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/aislamiento & purificación , Masculino , Factores de Tiempo , beta-Lactamasas/biosíntesis
9.
Genome Biol ; 13(7): R64, 2012 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-22830599

RESUMEN

BACKGROUND: While Staphylococcus epidermidis is commonly isolated from healthy human skin, it is also the most frequent cause of nosocomial infections on indwelling medical devices. Despite its importance, few genome sequences existed and the most frequent hospital-associated lineage, ST2, had not been fully sequenced. RESULTS: We cultivated 71 commensal S. epidermidis isolates from 15 skin sites and compared them with 28 nosocomial isolates from venous catheters and blood cultures. We produced 21 commensal and 9 nosocomial draft genomes, and annotated and compared their gene content, phylogenetic relatedness and biochemical functions. The commensal strains had an open pan-genome with 80% core genes and 20% variable genes. The variable genome was characterized by an overabundance of transposable elements, transcription factors and transporters. Biochemical diversity, as assayed by antibiotic resistance and in vitro biofilm formation, demonstrated the varied phenotypic consequences of this genomic diversity. The nosocomial isolates exhibited both large-scale rearrangements and single-nucleotide variation. We showed that S. epidermidis genomes separate into two phylogenetic groups, one consisting only of commensals. The formate dehydrogenase gene, present only in commensals, is a discriminatory marker between the two groups. CONCLUSIONS: Commensal skin S. epidermidis have an open pan-genome and show considerable diversity between isolates, even when derived from a single individual or body site. For ST2, the most common nosocomial lineage, we detect variation between three independent isolates sequenced. Finally, phylogenetic analyses revealed a previously unrecognized group of S. epidermidis strains characterized by reduced virulence and formate dehydrogenase, which we propose as a clinical molecular marker.


Asunto(s)
Infecciones Relacionadas con Catéteres/microbiología , Infección Hospitalaria/microbiología , Análisis de Secuencia de ADN/métodos , Piel/microbiología , Staphylococcus epidermidis/clasificación , Staphylococcus epidermidis/genética , Farmacorresistencia Bacteriana , Evolución Molecular , Variación Genética , Genoma Bacteriano , Humanos , Datos de Secuencia Molecular , Tipificación Molecular , Filogenia , Staphylococcus epidermidis/aislamiento & purificación
10.
BMC Genomics ; 11: 21, 2010 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-20064230

RESUMEN

BACKGROUND: The approaches for shotgun-based sequencing of vertebrate genomes are now well-established, and have resulted in the generation of numerous draft whole-genome sequence assemblies. In contrast, the process of refining those assemblies to improve contiguity and increase accuracy (known as 'sequence finishing') remains tedious, labor-intensive, and expensive. As a result, the vast majority of vertebrate genome sequences generated to date remain at a draft stage. RESULTS: To date, our genome sequencing efforts have focused on comparative studies of targeted genomic regions, requiring sequence finishing of large blocks of orthologous sequence (average size 0.5-2 Mb) from various subsets of 75 vertebrates. This experience has provided a unique opportunity to compare the relative effort required to finish shotgun-generated genome sequence assemblies from different species, which we report here. Importantly, we found that the sequence assemblies generated for the same orthologous regions from various vertebrates show substantial variation with respect to misassemblies and, in particular, the frequency and characteristics of sequence gaps. As a consequence, the work required to finish different species' sequences varied greatly. Application of the same standardized methods for finishing provided a novel opportunity to "assay" characteristics of genome sequences among many vertebrate species. It is important to note that many of the problems we have encountered during sequence finishing reflect unique architectural features of a particular vertebrate's genome, which in some cases may have important functional and/or evolutionary implications. Finally, based on our analyses, we have been able to improve our procedures to overcome some of these problems and to increase the overall efficiency of the sequence-finishing process, although significant challenges still remain. CONCLUSION: Our findings have important implications for the eventual finishing of the draft whole-genome sequences that have now been generated for a large number of vertebrates.


Asunto(s)
Genómica/métodos , Análisis de Secuencia de ADN/métodos , Vertebrados/genética , Animales , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA