Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Front Physiol ; 15: 1411421, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290617

RESUMEN

Introduction: Special Operations Forces (SOF) often conduct operations in physiologically stressful environments such as severe heat, cold, or hypoxia, which can induce decreases in a variety of cognitive abilities. Given the promising empirical demonstration of the efficacy of exogenous ketone monoester (KME) supplementation in attenuating cognitive performance decrease during hypoxia at rest in a laboratory setting, we conducted a real-world, field experiment examining KME's efficacy during high-altitude mountaineering, an austere environment in which US SOF have conducted increasing numbers of operations over the past two decades. Methods: Specifically, 34 students and cadre at the US Army 10th Special Forces Group Special Operations Advanced Mountaineering School (SOAMS) participated in a randomized, double-blind, placebo (PLA)-controlled crossover trial (KME vs. PLA) over 2 days of tactical mountain operations training. The participants ascended from 7,500 ft in altitude (basecamp) to 12,460 ft on 1 day and 13,627 ft the other day (in randomized order), while performing various training activities inducing high physical and cognitive loads over 8-12 h, and consumed six doses of KME or PLA 2-3 h apart throughout each training day. Results and Discussion: While KME increased blood ketone levels and decreased glucose levels, there were no clear indications that the elevated ketone level enhanced physical or cognitive performance. KME also produced a greater incidence of heartburn, nausea, and vomiting. In these elite operators, high-altitude mountaineering had a limited impact on cognitive performance, and KME supplementation did not demonstrate any benefit.

2.
Exp Physiol ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190570

RESUMEN

Acute ingestion of exogenous ketone supplements in the form of a (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (R-BD R-ßHB) ketone monoester (KME) can attenuate declines in oxygen availability during hypoxic exposure and might impact cognitive performance at rest and in response to moderate-intensity exercise. In a single-blind randomized crossover design, 16 males performed assessments of cognitive performance before and during hypoxic exposure with moderate exercise [2 × 20 min weighted ruck (∼22 kg) at 3.2 km/h at 10% incline] in a normobaric altitude chamber (4572 m, 11.8% O2). The R-BD R-ßHB KME (573 mg/kg) or a calorie- and taste-matched placebo (∼50 g maltodextrin) were co-ingested with 40 g of dextrose before exposure to hypoxia. The R-ßHB concentrations were rapidly elevated and sustained (>3 mM; P < 0.001) by KME. The decline in oxygen saturation during hypoxic exposure was attenuated in KME conditions by 2.4%-4.2% (P < 0.05) compared with placebo. Outcomes of cognitive performance tasks, in the form of the Defense Automated Neurobehavioral Assessment (DANA) code substitution task, the Stroop color and word task, and a shooting simulation, did not differ between trials before and during hypoxic exposure. These data suggest that the acute exogenous ketosis induced by KME ingestion can attenuate declining blood oxygen saturation during acute hypoxic exposure both at rest and during moderate-intensity exercise, but this did not translate into differences in cognitive performance before or after exercise in the conditions investigated. HIGHLIGHTS: What is the central question of this study? Can exogenous ketosis act as a countermeasure to declines in blood oxygen saturation and cognitive performance during acute hypoxic exposure while performing a weighted ruck exercise? What is the main finding and its importance? Acute exogenous ketosis via ingestion of a drink containing the (R)-3-hydroxybutyl (R)-3-hydroxybutyrate ketone monoester prior to acute hypoxic exposure attenuated hypoxia-induced declines in blood oxygen saturation but had no effect on cognitive performance during exercise.

3.
Exp Physiol ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190580

RESUMEN

Exogenous ketone supplements are a potential augmentation strategy for cognitive resilience during acute hypoxic exposure due to their capacity to attenuate the decline in oxygen (O2) availability, and by providing an alternative substrate for cerebral metabolism. Utilizing a single-blind randomized crossover design, 16 male military personnel (age, 25.3 ± 2.4 year, body mass, 86.2 ± 9.3 kg) performed tests of cognitive performance at rest in three environments: room air (baseline), normoxia (20 min; 0 m; 20.9% O2) and hypoxia (20 min; 6096 m, 9.7% O2) using a reduced O2 breathing device (ROBD). (R)-3-Hydroxybutyl (R)-3-hydroxybutyrate (R-BD R-ßHB) ketone monoester (KME; 650 mg/kg, split dose given at 30 min prior to each exposure) or taste-matched placebo (PLA) was ingested prior to normoxia and hypoxic exposure. Blood R-ßHB and glucose concentrations, cognitive performance and O2 saturation ( S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ) were collected throughout. KME ingestion increased blood R-ßHB concentration, which was rapid and sustained (>4 mM 30 min post; P < 0.001) and accompanied by lower blood glucose concentration (∼20 mg/dL; P < 0.01) compared to PLA. Declines in cognitive performance during hypoxic exposure, assessed as cognitive efficiency during a Defense Automated Neurobehavioral Assessment (DANA) code substitution task, were attenuated with KME leading to 6.8 (95% CL: 1.0, 12.6) more correct responses per minute compared to PLA (P = 0.018). The decline in S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ during hypoxic exposure was attenuated (6.40% S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ; 95% CL: 0.04, 12.75; P = 0.049) in KME compared to PLA (KME, 76.8 ± 6.4% S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ; PLA, 70.4 ± 7.4% S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ). Acute ingestion of KME attenuated the decline in cognitive performance during acute severe hypoxic exposure, which coincided with attenuation of declines in O2 saturation. HIGHLIGHTS: What is the central question of this study? Can exogenous ketosis act as a countermeasure to declines in blood oxygen saturation and cognitive performance during acute severe hypoxic exposure at rest? What is the main finding and its importance? Acute exogenous ketosis via ingestion of a drink containing the (R)-3-hydroxybutyl (R)-3-hydroxybutyrate ketone monoester prior to acute severe hypoxic exposure attenuated hypoxia-induced declines in blood oxygen saturation and cognitive performance at rest.

4.
Aerosp Med Hum Perform ; 92(7): 556-562, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34503629

RESUMEN

BACKGROUND: During hypoxia an operators cognitive performance may decline. This decline is linked to altered brain metabolism, resulting in decreased adenosine triphosphate (ATP) production. Ketone bodies are an alternative substrate to glucose for brain metabolic requirements; previous studies have shown that the presence of elevated ketone bodies in the blood maintains brain ATP levels and reduces cerebral glycolysis during hypoxia. Thus, ketones may be a strategy to mitigate cognitive decline in hypoxia. Ketone ester (KE) consumption allows rapid elevation of blood ketone levels; therefore, we investigated the effects of consuming a KE drink on cognitive performance during hypoxia. Here, we report results of a pilot study.METHODS: There were 11 subjects who completed a cognitive performance test battery under conditions of normoxia and hypoxia following consumption of a KE drink and a placebo control drink.RESULTS: Significant hypoxia effects (O2 saturation minimum was found to range between 63 and 88 in subjects) were found for blink duration (Ph2 0.665) and blink rate (Ph2 0.626), indicating that the hypoxia condition was associated with longer blink durations and lower blink rates. Significant hypoxia effects were likewise observed for a code substitution task (Ph2 0.487), indicating that performance on the task was significantly disrupted by the hypoxia stressor. KE consumption had a significant effect on blink duration (Ph2 0.270) and the code substitution task (Ph2 0.309).DISCUSSION: These finding suggest that some effects of acute hypoxia can be mitigated by nutritional ketosis.Coleman K, Phillips J, Sciarini M, Stubbs B, Jackson O, Kernagis D. A metabolic intervention for improving human cognitive performance during hypoxia. Aerosp Med Hum Perform. 2021; 92(7):556562.


Asunto(s)
Cetosis , Cognición , Humanos , Hipoxia , Cetonas , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA