Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JBMR Plus ; 8(5): ziae051, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38686038

RESUMEN

Genome wide association study (GWAS)-implicated bone mineral density (BMD) signals have been shown to localize in cis-regulatory regions of distal effector genes using 3D genomic methods. Detailed characterization of such genes can reveal novel causal genes for BMD determination. Here, we elected to characterize the "DNM3" locus on chr1q24, where the long non-coding RNA DNM3OS and the embedded microRNA MIR199A2 (miR-199a-5p) are implicated as effector genes contacted by the region harboring variation in linkage disequilibrium with BMD-associated sentinel single nucleotide polymorphism, rs12041600. During osteoblast differentiation of human mesenchymal stem/progenitor cells (hMSC), miR-199a-5p expression was temporally decreased and correlated with the induction of osteoblastic transcription factors RUNX2 and Osterix. Functional relevance of miR-199a-5p downregulation in osteoblastogenesis was investigated by introducing miR-199a-5p mimic into hMSC. Cells overexpressing miR-199a-5p depicted a cobblestone-like morphological change and failed to produce BMP2-dependent extracellular matrix mineralization. Mechanistically, a miR-199a-5p mimic modified hMSC propagated normal SMAD1/5/9 signaling and expressed osteoblastic transcription factors RUNX2 and Osterix but depicted pronounced upregulation of SOX9 and enhanced expression of essential chondrogenic genes ACAN, COMP, and COL10A1. Mineralization defects, morphological changes, and enhanced chondrogenic gene expression associated with miR-199a-5p mimic over-expression were restored with miR-199a-5p inhibitor suggesting specificity of miR-199a-5p in chondrogenic fate specification. The expression of both the DNM3OS and miR-199a-5p temporally increased and correlated with hMSC chondrogenic differentiation. Although miR-199a-5p overexpression failed to further enhance chondrogenesis, blocking miR-199a-5p activity significantly reduced chondrogenic pellet size, extracellular matrix deposition, and chondrogenic gene expression. Taken together, our results indicate that oscillating miR-199a-5p levels dictate hMSC osteoblast or chondrocyte terminal fate. Our study highlights a functional role of miR-199a-5p as a BMD effector gene at the DNM3 BMD GWAS locus, where patients with cis-regulatory genetic variation which increases miR-199a-5p expression could lead to reduced osteoblast activity.

2.
FASEB J ; 38(4): e23484, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38407380

RESUMEN

The transcription factor RUNX2 is a key regulator of chondrocyte phenotype during development, making it an ideal target for prevention of undesirable chondrocyte maturation in cartilage tissue-engineering strategies. Here, we engineered an autoregulatory gene circuit (cisCXp-shRunx2) that negatively controls RUNX2 activity in chondrogenic cells via RNA interference initiated by a tunable synthetic Col10a1-like promoter (cisCXp). The cisCXp-shRunx2 gene circuit is designed based on the observation that induced RUNX2 silencing after early chondrogenesis enhances the accumulation of cartilaginous matrix in ATDC5 cells. We show that the cisCXp-shRunx2 initiates RNAi of RUNX2 in maturing chondrocytes in response to the increasing intracellular RUNX2 activity without interfering with early chondrogenesis. The induced loss of RUNX2 activity in turn negatively regulates the gene circuit itself. Moreover, the efficacy of RUNX2 suppression from cisCXp-shRunx2 can be controlled by modifying the sensitivity of cisCXp promoter. Finally, we show the efficacy of inhibiting RUNX2 in preventing matrix loss in human mesenchymal stem cell-derived (hMSC-derived) cartilage under conditions that induce chondrocyte hypertrophic differentiation, including inflammation. Overall, our results demonstrated that the negative modulation of RUNX2 activity with our autoregulatory gene circuit enhanced matrix synthesis and resisted ECM degradation by reprogrammed MSC-derived chondrocytes in response to the microenvironment of the degenerative joint.


Asunto(s)
Condrogénesis , Redes Reguladoras de Genes , Humanos , Condrogénesis/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Condrocitos , Diferenciación Celular/genética
3.
Gels ; 9(11)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37998987

RESUMEN

Keeping sodium hypochlorite (NaOCl) within the root canal is challenging in regenerative endodontics. In this study, we developed a drug delivery system using a gelatin methacryloyl (GelMA) hydrogel incorporated with aluminosilicate clay nanotubes (HNTs) loaded with NaOCl. Pure GelMA, pure HNTs, and NaOCl-loaded HNTs carrying varying concentrations were assessed for chemo-mechanical properties, degradability, swelling capacity, cytocompatibility, antimicrobial and antibiofilm activities, and in vivo for inflammatory response and degradation. SEM images revealed consistent pore sizes of 70-80 µm for all samples, irrespective of the HNT and NaOCl concentration, while HNT-loaded hydrogels exhibited rougher surfaces. The hydrogel's compressive modulus remained between 100 and 200 kPa, with no significant variations. All hydrogels demonstrated a 6-7-fold mass increase and complete degradation by the seventh day. Despite an initial decrease in cell viability, all groups recovered to 65-80% compared to the control. Regarding antibacterial and antibiofilm properties, 12.5 HNT(Double) showed the highest inhibition zone on agar plates and the most significant reduction in biofilm compared to other groups. In vivo, the 12.5 HNT(Double) group displayed partial degradation after 21 days, with mild localized inflammatory responses but no tissue necrosis. In conclusion, the HNT-NaOCl-loaded GelMA hydrogel retains the disinfectant properties, providing a safer option for endodontic procedures without harmful potential.

4.
J Funct Biomater ; 14(9)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37754882

RESUMEN

Inducing chondrocyte redifferentiation and promoting cartilaginous matrix accumulation are key challenges in the application of biomaterials in articular cartilage repair. Poly(glycerol-dodecanedioate) (PGD) is a viable candidate for scaffold design in cartilage tissue engineering (CTE). However, the surface properties of PGD are not ideal for cell attachment and growth due to its relative hydrophobicity compared with natural extracellular matrix (ECM). In this study, PGD was coated with various masses of collagen type I or hyaluronic acid, individually or in combination, to generate a cell-material interface with biological cues. The effects of ligand composition and density on the PGD surface properties and shape, metabolic activity, cell phenotype, and ECM production of human articular chondrocytes (hACs) were evaluated. Introducing ECM ligands on PGD significantly improved its hydrophilicity and promoted the chondrocyte's anabolic activity. The morphology and anabolic activity of hACs on PGD were co-modulated by ligand composition and density, suggesting a combinatorial effect of both coating parameters on chondrocyte function during monolayer culture. Hyaluronic acid and its combination with collagen maintained a round cell shape and redifferentiated phenotype. This study demonstrated the complex mechanism of ligand-guided interactions between cell and biomaterial substrate and the potential of PGD as a scaffold material in the field of CTE.

5.
J Orthop Res ; 41(11): 2372-2383, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37031360

RESUMEN

Osteochondral allograft implantation is a form of cartilage transplant in which a cylindrical graft of cartilage and subchondral bone from a donor is implanted into a patient's prepared articular defect site. No standard exists for matching the cartilage thickness of the donor and recipient. The goal of this study was to use finite element (FE) analysis to identify the effect of cartilage thickness mismatches between donor and recipient cartilage on cartilage stresses in patellar transplants. Two types of FE models were used: patient-specific 3D models and simplified 2D models. 3D models highlighted which geometric features produced high-stress regions in the patellar cartilage and provided ranges for the parameter sweeps that were conducted with 2D models. 2D models revealed that larger thickness mismatches, thicker recipient cartilage, and a donor-to-recipient cartilage thickness ratio (DRCR) < 1 led to higher stresses at the interface between the donor and recipient cartilage. A surface angle between the donor-recipient cartilage interface and cartilage surface normal near the graft boundary increased stresses when DRCR > 1, with the largest increase observed for an angle of 15°. A surface angle decreased stresses when DRCR < 1. Clinical Significance: This study highlights a potential mechanism to explain the high rates of failure of patellar OCAs. Additionally, the relationship between geometric features and stresses explored in this study led to a hypothetical scoring system that indicates which transplanted patellar grafts may have a higher risk of failure.


Asunto(s)
Cartílago Articular , Fracturas Intraarticulares , Humanos , Articulación de la Rodilla , Cartílago/trasplante , Trasplante Homólogo , Rótula/cirugía , Aloinjertos
6.
Curr Rheumatol Rep ; 24(4): 96-110, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35404006

RESUMEN

PURPOSE OF REVIEW: Genetic engineering offers the possibility to simultaneously target multiple cellular pathways in the joints affected by osteoarthritis (OA). The purpose of this review is to summarize the ongoing efforts to develop disease-modifying osteoarthritis drugs (DMOADs) using genetic engineering, including targeting approaches, genome editing techniques, and delivery methods. RECENT FINDINGS: Several gene circuits have been developed that reprogram cells to autonomously target inflammation, and their efficacy has been demonstrated in chondrocytes and stem cells. Gene circuits developed for metabolic disorders, such as those targeting insulin resistance and obesity, also have the potential to mitigate the impact of these conditions on OA onset and/or progression. Despite the strides made in characterizing the inflammatory environment of the OA joint, our incomplete understanding of how the multiple regulators interact to control signal transduction, gene transcription, and translation to protein limits the development of targeted disease-modifying therapeutics. Continuous advances in targeted genome editing, combined with online toolkits that simplify the design and production of gene circuits, have the potential to accelerate the discovery and clinical application of multi-target gene circuits with disease-modifying properties for the treatment of OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Redes Reguladoras de Genes , Humanos , Osteoartritis/tratamiento farmacológico , Osteoartritis/terapia
7.
J Biomech Eng ; 142(12)2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32601691

RESUMEN

Knee finite element (FE) models are used to study tissue deformation in response to complex loads. Typically, ligaments are modeled using transversely isotropic, hyperelastic material models fitted to tension data along the predominant fiber direction (longitudinal) and, less commonly, to tension data orthogonal to the fiber direction (transverse). Currently, the shear and bulk responses of the anterior cruciate ligament (ACL) are not fitted to experimental data. In this study, a newly proposed material model was fitted to longitudinal tension, transverse tension, and shear experimental data. The matrix transverse tensile, shear, and bulk stiffnesses were then varied independently to determine the impact of each property on knee kinematics and tissue deformation in a whole-knee FE model. The range of values for each parameter was chosen based on published FE studies of the knee. For a knee at full extension under 134 N anterior tibial force (ATF), increasing matrix transverse tensile stiffness, shear stiffness, or bulk stiffness decreased anterior tibial translation (ATT), ACL longitudinal strain, and ACL shear strain. For a knee under 134 N ATF and 1600 N compression, changing the ACL matrix mechanical properties caused variations in ATT and thus changed cartilage deformation contours by changing the point of contact between the femoral and the tibial cartilage. These findings indicate that material models for the ACL must describe matrix material properties to best predict the in vivo response to applied loads.


Asunto(s)
Ligamento Cruzado Anterior , Articulación de la Rodilla , Fenómenos Biomecánicos , Tibia
8.
J Biomech Eng ; 142(2)2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31201745

RESUMEN

Articular cartilage focal defects are common soft tissue injuries potentially linked to osteoarthritis (OA) development. Although several defect characteristics likely contribute to osteoarthritis, their relationship to local tissue deformation remains unclear. Using finite element models with various femoral cartilage geometries, we explore how defects change cartilage deformation and joint kinematics assuming loading representative of the maximum joint compression during the stance phase of gait. We show how defects, in combination with location-dependent cartilage mechanics, alter deformation in affected and opposing cartilages, as well as joint kinematics. Small and average sized defects increased maximum compressive strains by approximately 50% and 100%, respectively, compared to healthy cartilage. Shifts in the spatial locations of maximum compressive strains of defect containing models were also observed, resulting in loading of cartilage regions with reduced initial stiffnesses supporting the new, elevated loading environments. Simulated osteoarthritis (modeled as a global reduction in mean cartilage stiffness) did not significantly alter joint kinematics, but exacerbated tissue deformation. Femoral defects were also found to affect healthy tibial cartilage deformations. Lateral femoral defects increased tibial cartilage maximum compressive strains by 25%, while small and average sized medial defects exhibited decreases of 6% and 15%, respectively, compared to healthy cartilage. Femoral defects also affected the spatial distributions of deformation across the articular surfaces. These deviations are especially meaningful in the context of cartilage with location-dependent mechanics, leading to increases in peak contact stresses supported by the cartilage of between 11% and 34% over healthy cartilage.


Asunto(s)
Cartílago Articular , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Humanos , Articulación de la Rodilla , Osteoartritis , Presión , Estrés Mecánico , Soporte de Peso
9.
Nanoscale ; 10(20): 9729-9735, 2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-29762623

RESUMEN

We investigate a cadmium sulfide (CdS) nanowire (NW) laser that is spontaneously internalized into a single cell to serve as a stand-alone intracellular probe. By pumping with nano-joule light pulses, green laser emission (500-520 nm) can be observed inside cells with a peak linewidth as narrow as 0.5 nm. Due to the sub-micron diameter (∼200 nm), the NW has an appreciable fraction of the evanescent field outside, facilitating a sensitive detection of cellular environmental changes. By monitoring the lasing peak wavelength shift in response to the intracellular refractive index change, our NW laser probe shows a sensitivity of 55 nm per RIU (refractive index units) and a figure of merit of approximately 98.

10.
Differentiation ; 95: 54-62, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28511052

RESUMEN

Inorganic phosphate (Pi) has been recognized as an important signaling molecule that modulates chondrocyte maturation and cartilage mineralization. However, conclusive experimental evidence for its involvement in early chondrogenesis is still lacking. Here, using high-density monolayer (2D) and pellet (3D) culture models of chondrogenic ATDC5 cells, we demonstrate that the cell response to Pi does not correlate with the Pi concentration in the culture medium but is better predicted by the availability of Pi on a per cell basis (Pi abundance). Both culture models were treated with ITS+, 10mM ß-glycerophosphate (ßGP), or ITS+/10mM ßGP, which resulted in three levels of Pi abundance in cultures: basal (Pi/DNA <10ng/µg), moderate (Pi/DNA=25.3 - 32.3ng/µg), and high abundance (Pi/DNA >60ng/µg). In chondrogenic medium alone, the abundance levels were at the basal level in 2D culture and moderate in 3D cultures. The addition of 10mM ßGP resulted in moderate abundance in 2D and high abundance in 3D cultures. Moderate Pi abundance enhanced early chondrogenesis and production of aggrecan and type II collagen whereas high Pi abundance inhibited chondrogenic differentiation and induced rapid mineralization. Inhibition of sodium phosphate transporters reduced phosphate-induced expression of chondrogenic markers. When 3D ITS+/ßGP cultures were treated with levamisole to reduce ALP activity, Pi abundance was decreased to moderate levels, which resulted in significant upregulation of chondrogenic markers, similar to the response in 2D cultures. Delay of phosphate delivery until after early chondrogenesis occurs (7 days) no longer enhanced chondrogenesis, but instead accelerated hypertrophy and mineralization. Together, our data highlights the dependence of chondroprogenitor cell response to Pi on its availability to individual cells and the chondrogenic maturation stage of these cells and suggest that appropriate temporal delivery of phosphate to ATDC5 cells in 3D cultures represents a rapid model for mechanistic studies into the effects of exogenous cues on chondrogenic differentiation, chondrocyte maturation, and matrix mineralization.


Asunto(s)
Condrocitos/efectos de los fármacos , Condrogénesis , Fosfatos/farmacología , Agrecanos/genética , Agrecanos/metabolismo , Animales , Línea Celular Tumoral , Condrocitos/citología , Condrocitos/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Ratones , Regulación hacia Arriba
11.
ACS Appl Mater Interfaces ; 8(23): 14423-9, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27223251

RESUMEN

Photoresponsive hydrogels were obtained by coordination of alginate-acrylamide hybrid gels (AlgAam) with ferric ions. The photochemistry of Fe(III)-alginate was used to tune the chemical composition, mechanical properties, and microstructure of the materials upon visible light irradiation. The photochemical treatment also induced changes in the swelling properties and transport mechanism in the gels due to the changes in material composition and microstructure. The AlgAam gels were biocompatible and could easily be dried and rehydrated with no change in mechanical properties. These gels showed promise as scaffolds for cartilage tissue engineering, where the photochemical treatment could be used to tune the properties of the material and ultimately change the growth and extracellular matrix production of chondrogenic cells. ATDC5 cells cultured on the hydrogels showed a greater than 2-fold increase in the production of sulfated glycosaminoglycans (sGAG) in the gels irradiated for 90 min compared to the dark controls. Our method provides a simple photochemical tool to postsynthetically control and adjust the chemical and mechanical environment in these gels, as well as the pore microstructure and transport properties. By changing these properties, we could easily access different levels of performance of these materials as substrates for tissue engineering.


Asunto(s)
Cartílago/fisiología , Hidrogeles/efectos de la radiación , Luz , Ingeniería de Tejidos/métodos , Fenómenos Biomecánicos , Células Cultivadas , Condrocitos/citología , Compuestos Férricos/química , Hidrogeles/química , Polisacáridos/química , Ingeniería de Tejidos/instrumentación , Andamios del Tejido/química
12.
Adv Healthc Mater ; 5(10): 1192-202, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26959641

RESUMEN

Improve functional quality of cartilage tissue engineered from stem cells requires a better understanding of the functional evolution of native cartilage tissue. Therefore, a biosynthetic hydrogel was developed containing RGD, hyaluronic acid and/or type-I collagen conjugated to poly(ethylene glycol) acrylate to recapitulate the precondensation microenvironment of the developing limb. Conjugation of any combination of the three ligands did not alter the shear moduli or diffusion properties of the PEG hydrogels; thus, the influence of ligand composition on chondrogenesis could be investigated in the context of varying matrix stiffness. Gene expression of ligand receptors (CD44 and the b1-integrin) as well as markers of condensation (cell clustering and N-cadherin gene expression) and chondrogenesis (Col2a1 gene expression and sGAG production) by chondroprogenitor cells in this system were modulated by both matrix stiffness and ligand composition, with the highest gene expression occurring in softer hydrogels containing all three ligands. Cell proliferation in these 3D matrices for 7 d prior to chondrogenic induction increased the rate of sGAG production in a stiffness-dependent manner. This biosynthetic hydrogel supports the features of early limb-bud condensation and chondrogenesis and is a novel platform in which the influence of the matrix physicochemical properties on these processes can be elucidated.


Asunto(s)
Condrogénesis/efectos de los fármacos , Colágeno Tipo I/administración & dosificación , Hidrogeles/administración & dosificación , Andamios del Tejido/química , Animales , Cadherinas/metabolismo , Cartílago , Línea Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colágeno Tipo I/química , Matriz Extracelular/metabolismo , Expresión Génica/efectos de los fármacos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/química , Ligandos , Ratones , Polietilenglicoles/química , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Ingeniería de Tejidos/métodos
13.
J Mater Chem B ; 3(40): 7920-7929, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26693016

RESUMEN

Articular cartilage has a limited healing capacity that complicates the treatment of joint injuries and osteoarthritis. Newer repair strategies have focused on the use of cells and biomaterials to promote cartilage regeneration. In the present study, we developed and characterized bioinspired materials designed to mimic the composition of the cartilage extracellular matrix. Chondroitin sulfate (CS) and chitosan (CH) were used to form physically cross-linked macromolecular polyelectrolyte complexes (PEC) without the use of additional crosslinkers. A single-step water-in-oil emulsification process was used to either directly embed mesenchymal stem cells (MSC) in PEC particles created with a various concentrations of CS and CH, or to co-embed MSC with PEC in agarose-based microbeads. Direct embedding of MSC in PEC resulted in high cell viability but irregular and large particles. Co-embedding of PEC particles with MSC in agarose (Ag) resulted in uniform microbeads 80-90 µm in diameter that maintained high cell viability over three weeks in culture. Increased serum content resulted in more uniform PEC distribution within the microbead matrix, and both high and low CS:CH ratios resulted in more homogeneous microbeads than 1:1 formulations. Under chondrogenic conditions, expression of sulfated GAG and collagen type II was increased in 10:1 CS:CH PEC-Ag microbeads compared to pure Ag beads, indicating a chondrogenic influence of the PEC component. Such PEC-Ag microbeads may have utility in the directed differentiation and delivery of progenitor cell populations for cartilage repair.

14.
Ther Deliv ; 6(8): 915-34, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26272334

RESUMEN

Vascular wall endothelial cells control several physiological processes and are implicated in many diseases, making them an attractive candidate for drug targeting. Vascular-targeted drug carriers (VTCs) offer potential for reduced side effects and improved therapeutic efficacy, however, only limited therapeutic success has been achieved to date. This is perhaps due to complex interactions of VTCs with blood components, which dictate VTC transport and adhesion to endothelial cells. This review focuses on VTC interaction with blood as well as novel 'bio-inspired' designs to mimic and exploit features of blood in VTC development. Advanced approaches for enhancing VTCs are discussed along with applications in regenerative medicine, an area of massive potential growth and expansion of VTC utility in the near future.


Asunto(s)
Vasos Sanguíneos/efectos de los fármacos , Sangre/efectos de los fármacos , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Humanos , Enfermedades Vasculares/tratamiento farmacológico
15.
J Biomed Mater Res A ; 103(8): 2701-10, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25649205

RESUMEN

Hydrogels have been used in regenerative medicine because they provide a three-dimensional environment similar to soft tissues, allow diffusion of nutrients, present critical biological signals, and degrade via endogenous enzymatic mechanisms. Herein, we developed in vitro system mimicking cell-cell and cell-matrix interactions in secondary lymphoid organs (SLOs). Existing in vitro culture systems cannot accurately represent the complex interactions happening between T-cells and stromal cells in immune response. To model T-cell interaction in SLOs in vitro, we encapsulated stromal cells in fibrin, collagen, or fibrin-collagen hydrogels and studied how different mechanical and biological properties affect stromal network formation. Overall, fibrin supplemented with aprotinin was superior to collagen and fibrin-collagen in terms of network formation and promotion of T-cell penetration. After 8 days of culture, stromal networks formed through branching and joining with other adjacent cell populations. T-cells added to the newly formed stromal networks migrated and attached to stromal cells, similar to the T-cell zones of the lymph nodes in vivo. Our results suggest that the constructed three-dimensional lymphoid stromal network can mimic the in vivo environment and allow the modeling of T-cell interaction in SLOs.


Asunto(s)
Hidrogeles , Células del Estroma/citología , Linfocitos T/citología , Humanos
16.
Tissue Eng Part A ; 19(3-4): 475-83, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22920855

RESUMEN

The goal of this study was to determine the effects of chondrogenic predifferentiation on the ability of bone marrow-derived stromal cells (BMSCs) delivered to growth plate defects to restore growth function. Chondrogenesis was induced with transforming growth factor (TGF)-ß1 treatment in high-density monolayer cultures of BMSCs in vitro. The predifferentiated or undifferentiated BMSCs were either seeded into agarose gels for continued in vitro culture, or injected into growth plate defects via an in situ gelling agarose. Predifferentiated BMSCs had higher Sox-9, type II collagen, and aggrecan mRNA levels compared to undifferentiated cells after high-density monolayer culture. After transfer to agarose gels, predifferentiated cells did not produce a cartilaginous matrix, even with continued TGF-ß1 stimulation, whereas undifferentiated cells produced a cartilaginous matrix in this system. Three-dimensional images of the growth plate created from microcomputed tomography scans showed that delivery of either predifferentiated or undifferentiated cells to defects resulted in a decrease in mineralized tether formation (fusion) in the growth plate tissue surrounding the defect to normal levels. Limb length discrepancy between injured and control limbs was corrected after treatment with undifferentiated, but not predifferentiated, cells. These results indicate that cell therapy may be an effective treatment to reduce growth dysfunction after growth plate injury, perhaps by maintaining the health of the uninjured growth plate tissue, and that the cell differentiation state plays a role in restoring the growth potential of the injured limb.


Asunto(s)
Condrocitos/patología , Condrogénesis/fisiología , Fracturas del Cartílago/patología , Fracturas del Cartílago/cirugía , Placa de Crecimiento/patología , Placa de Crecimiento/cirugía , Trasplante de Células Madre Mesenquimatosas/métodos , Animales , Diferenciación Celular , Células Cultivadas , Curación de Fractura/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
17.
Bone ; 51(5): 920-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22910579

RESUMEN

Understanding how the material properties of bone tissue from the various forms of osteogenesis imperfecta (OI) differ will allow us to tailor treatment regimens for affected patients. To this end, we characterized the bone structure and material properties of two mouse models of OI, the osteogenesis imperfecta mouse (oim/oim) and fragilitas ossium (fro/fro), in which bone fragility is due to a genetic defect in collagen type I and a defect in osteoblast matrix mineralization, respectively. Bones from 3 to 6 month old animals were examined using Fourier transform infrared spectroscopic imaging (FTIRI), microcomputed tomography (micro-CT), histology, and biochemical analysis. The attributes of oim/oim bone tissue were relatively constant over time when compared to wild type animals. The mineral density in oim/oim cortices and trabecular bone was higher than wild type while the bones had thinner cortices and fewer trabeculae that were thinner and more widely spaced. The fro/fro animals exhibited osteopenic attributes at 3 months. However, by 6 months, their spectroscopic and geometric properties were similar to wild type animals. Despite the lack of a specific collagen defect in fro/fro mice, both fro/fro and oim/oim genotypes exhibited abnormal collagen crosslinking as determined by FTIRI at both time points. These results demonstrate that abnormal extracellular matrix assembly plays a role in the bone fragility in both of these models.


Asunto(s)
Osteogénesis Imperfecta/diagnóstico por imagen , Osteogénesis Imperfecta/metabolismo , Animales , Densidad Ósea/genética , Densidad Ósea/fisiología , Colágeno/genética , Colágeno/metabolismo , Femenino , Masculino , Ratones , Mutación , Osteogénesis Imperfecta/genética , Espectroscopía Infrarroja por Transformada de Fourier , Microtomografía por Rayos X
18.
Bone ; 46(6): 1555-63, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20176156

RESUMEN

Injuries to the growth plate remain a significant clinical challenge. The need to better understand mechanisms of growth disruption following transphyseal injuries and evaluate new therapeutic approaches to growth restoration motivates development of a well characterized model of growth plate injury. The goals of this study were to develop a growth plate defect model in the rat and to use microcomputed tomography (micro-CT) imaging to detect and quantify associated changes in growth plate morphology and mineralization over time following injury and in response to treatment. Three-dimensional images of the growth plate were created from micro-CT scans and used to quantify the volume of mineralized tissue within the defect site. Growth plate thickness and volume as well as the degree of growth plate fusion were also measured from the reconstructed 3D images. Growth deficiency was then quantified as a function of time post-injury from whole limb micro-CT scans. Finally, this model was used to determine the ability of an injectable in situ gelling hydrogel to prevent formation of a bony bridge within the defect and the subsequent effect on limb length deficiency and changes to growth plate morphology. Growth plate injury resulted in significant shortening of the defect limb by day 28 and significant thinning and fusion of the surrounding growth plate up to day 112. Limb length reduction was correlated with changes in the growth plate volume and average thickness at day 56. Injection of an in situ gelling agarose into the defect resulted in a reduction of limb length discrepancy as well as a thicker growth plate on average compared to empty defect controls. These results establish a novel method of characterizing changes in whole bone and growth plate morphology due to a growth plate injury and indicate that treatment with agarose hydrogel reduces limb length discrepancy but is not sufficient to regenerate growth plate tissue or fully restore growth function.


Asunto(s)
Placa de Crecimiento/diagnóstico por imagen , Fracturas de Salter-Harris , Microtomografía por Rayos X , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Sprague-Dawley
19.
Calcif Tissue Int ; 85(2): 134-45, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19506934

RESUMEN

Rat tibial growth plates have X-ray opaque tethers that link the epiphysis and metaphysis and increase with age as the growth plate (GP) becomes thinner. To determine if tether formation is a regulated process of GP maturation, we tested the hypotheses that tether properties and distribution can be quantified by micro-computed tomography (microCT), that rachitic GPs typical of vitamin D receptor knockout (VDR(-/-)) mice have fewer tethers and altered tether distribution, and that tether formation is regulated by signaling via the VDR. Distal femoral GPs from VDR(+/+) and VDR(-/-) 8-week-old mice were analyzed with microCT and then processed for decalcified and undecalcified histomorphometry. A wide range of parameters that assessed GP and tether geometry and morphology, along with tether distribution, were measured using both microCT and histology. Growth plates of 10-week-old VDR(+/+) and VDR(-/-) mice on a high-calcium, phosphorus, lactose, and vitamin D(3) rescue diet were also analyzed. Both microCT and histology showed tethers present throughout normal mice GPs, while reduction in tether number and volume percentage occurred in VDR(-/-) GPs with localization to the central region. Decreased shrinkage in the axial direction during decalcified histological processing correlated with tether formation, suggesting mechanical stability due to tethers. Tether formation increased greatly between 8 and 10 weeks. Rescue diets restored VDR(-/-) GP size but not tether volume percentage. Overall, these results demonstrate microCT imaging's utility for analyzing tether formation and suggest that signaling via the VDR plays a pivotal role in tether formation.


Asunto(s)
Diáfisis/patología , Epífisis/patología , Fémur/patología , Placa de Crecimiento/patología , Receptores de Calcitriol/metabolismo , Animales , Diáfisis/crecimiento & desarrollo , Diáfisis/metabolismo , Epífisis/crecimiento & desarrollo , Epífisis/metabolismo , Femenino , Fémur/crecimiento & desarrollo , Fémur/metabolismo , Silenciador del Gen , Placa de Crecimiento/crecimiento & desarrollo , Placa de Crecimiento/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Transducción de Señal , Tomografía Computarizada por Rayos X
20.
Biomaterials ; 28(12): 2077-86, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17257670

RESUMEN

The aim of this study was to investigate the effects of alginate and agarose on the response of bone marrow stromal cells (BMSCs) to chondrogenic stimuli. Rat BMSCs were expanded in monolayer culture with or without FGF-2 supplementation. Cells were then seeded in 2% alginate and agarose gels and cultured in media with or without TGF-beta1 or dexamethasone (Dex). Sulfated glycosaminoglycans (sGAGs), collagen type II, and aggrecan were expressed in all groups that received TGF-beta1 treatment during hydrogel culture. Expansion of rat BMSCs in the presence of FGF-2 increased production of sGAG in TGF-beta1-treated groups over those cultures that were treated with TGF-beta1 alone in alginate cultures. However, in agarose, cells exposed to FGF-2 during expansion produced less sGAG within TGF-beta1-supplemented groups over those cultures treated with TGF-beta1 alone. Dex was required for optimal matrix synthesis in both hydrogels, but was found to decrease cell viability in agarose constructs. These results indicate that the response of BMSCs to a chondrogenic growth factor regimen is scaffold dependent.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Dexametasona/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Hidrogeles , Células del Estroma/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología , Animales , Células de la Médula Ósea/citología , Ratas , Células del Estroma/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...