Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 12(1): 42, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500181

RESUMEN

Central nervous system (CNS) embryonal tumors are a heterogeneous group of high-grade malignancies, and the increasing clinical use of methylation profiling and next-generation sequencing has led to the identification of molecularly distinct subtypes. One proposed tumor type, CNS tumor with BRD4::LEUTX fusion, has been described. As only a few CNS tumors with BRD4::LEUTX fusions have been described, we herein characterize a cohort of 9 such cases (4 new, 5 previously published) to further describe their clinicopathologic and molecular features. We demonstrate that CNS embryonal tumor with BRD4::LEUTX fusion comprises a well-defined methylation class/cluster. We find that patients are young (4 years or younger), with large tumors at variable locations, and frequently with evidence of leptomeningeal/cerebrospinal fluid (CSF) dissemination. Histologically, tumors were highly cellular with high-grade embryonal features. Immunohistochemically, 5/5 cases showed synaptophysin and 4/5 showed OLIG2 expression, thus overlapping with CNS neuroblastoma, FOXR2-activated. DNA copy number profiles were generally flat; however, two tumors had chromosome 1q gains. No recurring genomic changes, besides the presence of the fusion, were found. The LEUTX portion of the fusion transcript was constant in all cases assessed, while the BRD4 portion varied but included a domain with proto-oncogenic activity in all cases. Two patients with clinical follow up available had tumors with excellent response to chemotherapy. Two of our patients were alive without evidence of recurrence or progression after gross total resection and chemotherapy at 16 and 33 months. One patient relapsed, and the last of our four patients died of disease one month after diagnosis. Overall, this case series provides additional evidence for this as a distinct tumor type defined by the presence of a specific fusion as well as a distinct DNA methylation signature. Studies on larger series are required to further characterize these tumors.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Neoplasias de Células Germinales y Embrionarias , Humanos , Neoplasias Encefálicas/patología , Proteínas Nucleares/genética , Factores de Transcripción/genética , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Neoplasias de Células Germinales y Embrionarias/genética , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular , Factores de Transcripción Forkhead , Proteínas de Homeodominio
2.
Brain Sci ; 14(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275528

RESUMEN

Whereas traditional histology and light microscopy require multiple steps of formalin fixation, paraffin embedding, and sectioning to generate images for pathologic diagnosis, Microscopy using Ultraviolet Surface Excitation (MUSE) operates through UV excitation on the cut surface of tissue, generating images of high resolution without the need to fix or section tissue and allowing for potential use for downstream molecular tests. Here, we present the first study of the use and suitability of MUSE microscopy for neuropathological samples. MUSE images were generated from surgical biopsy samples of primary and metastatic brain tumor biopsy samples (n = 27), and blinded assessments of diagnoses, tumor grades, and cellular features were compared to corresponding hematoxylin and eosin (H&E) images. A set of MUSE-treated samples subsequently underwent exome and targeted sequencing, and quality metrics were compared to those from fresh frozen specimens. Diagnostic accuracy was relatively high, and DNA and RNA integrity appeared to be preserved for this cohort. This suggests that MUSE may be a reliable method of generating high-quality diagnostic-grade histologic images for neuropathology on a rapid and sample-sparing basis and for subsequent molecular analysis of DNA and RNA.

3.
Diagnostics (Basel) ; 13(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36900091

RESUMEN

Uveal melanoma is the most common primary ocular tumor in adults and causes morbidity through lymphovascular metastasis. The presence of monosomy 3 in uveal melanomas is one of the most important prognostic indicators for metastasis. Two major molecular pathology testing modalities used to assess monosomy 3 are fluorescence in situ hybridization (FISH) and chromosomal microarray analysis (CMA). Here, we report two cases of discordant monosomy 3 test results in uveal melanoma enucleation specimens, performed using these molecular pathology tests. The first case is of uveal melanoma from a 51-year-old male that showed no evidence of monosomy 3 when assessed by CMA, but where it was subsequently detected by FISH. The second case is of uveal melanoma from a 49-year-old male that showed monosomy 3 at the limit of detection when assessed by CMA, but where it was not detected by subsequent FISH analysis. These two cases underscore the potential benefits of each testing modality for monosomy 3. Mainly, while CMA may be more sensitive to low levels of monosomy 3, FISH may be best method for small tumors with high levels of adjacent normal ocular tissue. Our cases suggest that both testing methods should be pursued for uveal melanoma, with a single positive result for either test interpreted as indicating the presence of monosomy 3.

4.
Int J Surg Case Rep ; 68: 124-128, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32145563

RESUMEN

INTRODUCTION: H3K27M-mutant diffuse midline glioma is a recently classified unique entity predominantly affecting pediatric patients and rarely adults. The clinicopathologic features in adults remain poorly characterized. PRESENTATION OF CASE: A 36-year-old man presented with subacute progressive cognitive and visual deterioration, and hydrocephalus requiring ventricular shunting. MRI revealed a diffusely infiltrating lesion with a gliomatosis cerebri growth pattern, multiple foci of contrast enhancement, and diffuse leptomeningeal involvement. Suboccipital craniotomy with exploration of the posterior fossa revealed a subtle capsular lesion infiltrating into the choroid plexus. Although histologically low-grade, the tumor was found to have an H3K27 M mutation establishing the diagnosis. DISCUSSION: In spite of diverse clinicopathologic characteristics, H3K27M-mutant diffuse midline gliomas are incurable, WHO grade IV lesions with poor prognosis. We discuss our case in the context of a review of published reports of H3K27-mutant diffuse midline gliomas in adults. Findings late in the disease course may mimic inflammatory or infectious pathologies radiographically, and low-grade infiltrative neoplasms histologically. CONCLUSION: The diverse clinical, radiographic and molecular features of H3K27M-mutant diffuse midline gliomas in adults remain to be completely characterized. A high index of suspicion is required to avoid missing the diagnosis. Early biopsy and detailed molecular characterization are critical for accurate diagnosis and patient counseling.

5.
Front Oncol ; 10: 24, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32047723

RESUMEN

Immunotherapy is increasingly used in the treatment of glioblastoma (GBM), with immune checkpoint therapy gaining in popularity given favorable outcomes achieved for other tumors. However, immune-mediated (IM)-pseudoprogression is common, remains poorly characterized, and renders conventional imaging of little utility when evaluating for treatment response. We present the case of a 64-year-old man with GBM who developed pathologically proven IM-pseudoprogression after initiation of a checkpoint inhibitor, and who subsequently developed true tumor progression at a distant location. Based on both qualitative and quantitative analysis, we demonstrate that an advanced diffusion-weighted imaging (DWI) technique called restriction spectrum imaging (RSI) can differentiate IM-pseudoprogression from true progression even when conventional imaging, including standard DWI/apparent diffusion coefficient (ADC), is not informative. These data complement existing literature supporting the ability of RSI to estimate tumor cellularity, which may help to resolve complex diagnostic challenges such as the identification of IM-pseudoprogression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...