Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
medRxiv ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562733

RESUMEN

Hyperpolarization activated Cyclic Nucleotide (HCN) gated channels are crucial for various neurophysiological functions, including learning and sensory functions, and their dysfunction are responsible for brain disorders, such as epilepsy. To date, HCN2 variants have only been associated with mild epilepsy and recently, one monoallelic missense variant has been linked to developmental and epileptic encephalopathy. Here, we expand the phenotypic spectrum of HCN2- related disorders by describing twenty-one additional individuals from fifteen unrelated families carrying HCN2 variants. Seventeen individuals had developmental delay/intellectual disability (DD/ID), two had borderline DD/ID, and one had borderline DD. Ten individuals had epilepsy with DD/ID, with median age of onset of 10 months, and one had epilepsy with normal development. Molecular diagnosis identified thirteen different pathogenic HCN2 variants, including eleven missense variants affecting highly conserved amino acids, one frameshift variant, and one in-frame deletion. Seven variants were monoallelic of which five occurred de novo, one was not maternally inherited, one was inherited from a father with mild learning disabilities, and one was of unknown inheritance. The remaining six variants were biallelic, with four homozygous and two compound heterozygous variants. Functional studies using two-electrode voltage-clamp recordings in Xenopus laevis oocytes were performed on three monoallelic variants, p.(Arg324His), p.(Ala363Val), and p.(Met374Leu), and three biallelic variants, p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp). The p.(Arg324His) variant induced a strong increase of HCN2 conductance, while p.(Ala363Val) and p.(Met374Leu) displayed dominant negative effects, leading to a partial loss of HCN2 channel function. By confocal imaging, we found that the p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp) pathogenic variants impaired membrane trafficking, resulting in a complete loss of HCN2 elicited currents in Xenopus oocytes. Structural 3D-analysis in depolarized and hyperpolarized states of HCN2 channels, revealed that the pathogenic variants p.(His205Gln), p.(Ser409Leu), p.(Arg324Cys), p.(Asn369Ser) and p.(Gly460Asp) modify molecular interactions altering HCN2 function. Taken together, our data broadens the clinical spectrum associated with HCN2 variants, and disclose that HCN2 is involved in developmental encephalopathy with or without epilepsy.

2.
Genet Med ; 26(5): 101087, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38288683

RESUMEN

PURPOSE: Interneuronopathies are a group of neurodevelopmental disorders characterized by deficient migration and differentiation of gamma-aminobutyric acidergic interneurons resulting in a broad clinical spectrum, including autism spectrum disorders, early-onset epileptic encephalopathy, intellectual disability, and schizophrenic disorders. SP9 is a transcription factor belonging to the Krüppel-like factor and specificity protein family, the members of which harbor highly conserved DNA-binding domains. SP9 plays a central role in interneuron development and tangential migration, but it has not yet been implicated in a human neurodevelopmental disorder. METHODS: Cases with SP9 variants were collected through international data-sharing networks. To address the specific impact of SP9 variants, in silico and in vitro assays were carried out. RESULTS: De novo heterozygous variants in SP9 cause a novel form of interneuronopathy. SP9 missense variants affecting the glutamate 378 amino acid result in severe epileptic encephalopathy because of hypomorphic and neomorphic DNA-binding effects, whereas SP9 loss-of-function variants result in a milder phenotype with epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION: De novo heterozygous SP9 variants are responsible for a neurodevelopmental disease. Interestingly, variants located in conserved DNA-binding domains of KLF/SP family transcription factors may lead to neomorphic DNA-binding functions resulting in a combination of loss- and gain-of-function effects.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Discapacidad Intelectual , Interneuronas , Humanos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Epilepsia/genética , Epilepsia/patología , Masculino , Femenino , Interneuronas/metabolismo , Interneuronas/patología , Niño , Preescolar , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fenotipo , Mutación Missense/genética , Heterocigoto , Adolescente , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología
3.
Eur J Hum Genet ; 32(2): 190-199, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37872275

RESUMEN

Variants of uncertain significance (VUS) are a significant issue for the molecular diagnosis of rare diseases. The publication of episignatures as effective biomarkers of certain Mendelian neurodevelopmental disorders has raised hopes to help classify VUS. However, prediction abilities of most published episignatures have not been independently investigated yet, which is a prerequisite for an informed and rigorous use in a diagnostic setting. We generated DNA methylation data from 101 carriers of (likely) pathogenic variants in ten different genes, 57 VUS carriers, and 25 healthy controls. Combining published episignature information and new validation data with a k-nearest-neighbour classifier within a leave-one-out scheme, we provide unbiased specificity and sensitivity estimates for each of the signatures. Our procedure reached 100% specificity, but the sensitivities unexpectedly spanned a very large spectrum. While ATRX, DNMT3A, KMT2D, and NSD1 signatures displayed a 100% sensitivity, CREBBP-RSTS and one of the CHD8 signatures reached <40% sensitivity on our dataset. Remaining Cornelia de Lange syndrome, KMT2A, KDM5C and CHD7 signatures reached 70-100% sensitivity at best with unstable performances, suffering from heterogeneous methylation profiles among cases and rare discordant samples. Our results call for cautiousness and demonstrate that episignatures do not perform equally well. Some signatures are ready for confident use in a diagnostic setting. Yet, it is imperative to characterise the actual validity perimeter and interpretation of each episignature with the help of larger validation sample sizes and in a broader set of episignatures.


Asunto(s)
Trastornos del Neurodesarrollo , Patología Molecular , Humanos , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Metilación de ADN , Biomarcadores
4.
J Med Genet ; 61(1): 36-46, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37586840

RESUMEN

PURPOSE: Wide access to clinical exome/genome sequencing (ES/GS) enables the identification of multiple molecular diagnoses (MMDs), being a long-standing but underestimated concept, defined by two or more causal loci implicated in the phenotype of an individual with a rare disease. Only few series report MMDs rates (1.8% to 7.1%). This study highlights the increasing role of MMDs in a large cohort of individuals addressed for congenital anomalies/intellectual disability (CA/ID). METHODS: From 2014 to 2021, our diagnostic laboratory rendered 880/2658 positive ES diagnoses for CA/ID aetiology. Exhaustive search on MMDs from ES data was performed prospectively (January 2019 to December 2021) and retrospectively (March 2014 to December 2018). RESULTS: MMDs were identified in 31/880 individuals (3.5%), responsible for distinct (9/31) or overlapping (22/31) phenotypes, and potential MMDs in 39/880 additional individuals (4.4%). CONCLUSION: MMDs are frequent in CA/ID and remain a strong challenge. Reanalysis of positive ES data appears essential when phenotypes are partially explained by the initial diagnosis or atypically enriched overtime. Up-to-date clinical data, clinical expertise from the referring physician, strong interactions between clinicians and biologists, and increasing gene discoveries and improved ES bioinformatics tools appear all the more fundamental to enhance chances of identifying MMDs. It is essential to provide appropriate patient care and genetic counselling.


Asunto(s)
Discapacidad Intelectual , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Estudios Retrospectivos , Fenotipo , Secuenciación del Exoma , Enfermedades Raras/genética
5.
Ann Pathol ; 43(6): 462-474, 2023 Nov.
Artículo en Francés | MEDLINE | ID: mdl-37635016

RESUMEN

INTRODUCTION: Infant-type hemispheric gliomas belong to pediatric-type diffuse high-grade gliomas according to the 2021 WHO classification of central nervous system tumors. They are characterized by tyrosine kinase gene rearrangements (NTRK1/2/3, ALK, ROS1, MET). The aim of the study was to describe the clinical, histopathologic, and molecular characteristics of such tumors, and to provide a review of the literature. PATIENTS AND METHODS: This retrospective series comprises four cases of infant-type hemispheric glioma diagnosed at Angers University Hospital between 2020 and 2022. The diagnosis was suspected based on morphology and immunohistochemistry and was confirmed by molecular biology techniques. RESULTS: The most common clinical sign was raised intracranial pressure. Imaging showed a large cerebral hemispheric tumor with contrast enhancement. Microscopic examination revealed diffuse astrocytoma with high-grade features, sometimes with neuronal or pseudo-ependymal differentiation. Identification of a gene fusion involving a tyrosine kinase gene allowed to make a definitive diagnosis of infant-type hemispheric glioma. DISCUSSION AND CONCLUSION: Infant-type hemispheric gliomas are rare and present as large cerebral hemispheric tumors in very young children. Searching for a tyrosine kinase gene fusion should be systematic when dealing with a high-grade glioma in an infant. Importantly, these gene fusions are therapeutic targets. The impact of targeted therapies on patient survival should be evaluated in future prospective studies.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Lactante , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Fusión Génica , Glioma/patología , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Estudios Retrospectivos
6.
J Med Genet ; 61(1): 47-56, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37495270

RESUMEN

BACKGROUND: Molecular diagnosis of neurodevelopmental disorders (NDDs) is mainly based on exome sequencing (ES), with a diagnostic yield of 31% for isolated and 53% for syndromic NDD. As sequencing costs decrease, genome sequencing (GS) is gradually replacing ES for genome-wide molecular testing. As many variants detected by GS only are in deep intronic or non-coding regions, the interpretation of their impact may be difficult. Here, we showed that integrating RNA-Seq into the GS workflow can enhance the analysis of the molecular causes of NDD, especially structural variants (SVs), by providing valuable complementary information such as aberrant splicing, aberrant expression and monoallelic expression. METHODS: We performed trio-GS on a cohort of 33 individuals with NDD for whom ES was inconclusive. RNA-Seq on skin fibroblasts was then performed in nine individuals for whom GS was inconclusive and optical genome mapping (OGM) was performed in two individuals with an SV of unknown significance. RESULTS: We identified pathogenic or likely pathogenic variants in 16 individuals (48%) and six variants of uncertain significance. RNA-Seq contributed to the interpretation in three individuals, and OGM helped to characterise two SVs. CONCLUSION: Our study confirmed that GS significantly improves the diagnostic performance of NDDs. However, most variants detectable by GS alone are structural or located in non-coding regions, which can pose challenges for interpretation. Integration of RNA-Seq data overcame this limitation by confirming the impact of variants at the transcriptional or regulatory level. This result paves the way for new routinely applicable diagnostic protocols.


Asunto(s)
Trastornos del Neurodesarrollo , Humanos , Secuenciación del Exoma , RNA-Seq , Flujo de Trabajo , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Mapeo Cromosómico
7.
Front Genet ; 14: 1099995, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035737

RESUMEN

Introduction: Prenatal ultrasound (US) anomalies are detected in around 5%-10% of pregnancies. In prenatal diagnosis, exome sequencing (ES) diagnostic yield ranges from 6% to 80% depending on the inclusion criteria. We describe the first French national multicenter pilot study aiming to implement ES in prenatal diagnosis following the detection of anomalies on US. Patients and methods: We prospectively performed prenatal trio-ES in 150 fetuses with at least two US anomalies or one US anomaly known to be frequently linked to a genetic disorder. Trio-ES was only performed if the results could influence pregnancy management. Chromosomal microarray (CMA) was performed before or in parallel. Results: A causal diagnosis was identified in 52/150 fetuses (34%) with a median time to diagnosis of 28 days, which rose to 56/150 fetuses (37%) after additional investigation. Sporadic occurrences were identified in 34/56 (60%) fetuses and unfavorable vital and/or neurodevelopmental prognosis was made in 13/56 (24%) fetuses. The overall diagnostic yield was 41% (37/89) with first-line trio-ES versus 31% (19/61) after normal CMA. Trio-ES and CMA were systematically concordant for identification of pathogenic CNV. Conclusion: Trio-ES provided a substantial prenatal diagnostic yield, similar to postnatal diagnosis with a median turnaround of approximately 1 month, supporting its routine implementation during the detection of prenatal US anomalies.

8.
Front Cell Dev Biol ; 11: 1021920, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926521

RESUMEN

Purpose: Multi-omics offer worthwhile and increasingly accessible technologies to diagnostic laboratories seeking potential second-tier strategies to help patients with unresolved rare diseases, especially patients clinically diagnosed with a rare OMIM (Online Mendelian Inheritance in Man) disease. However, no consensus exists regarding the optimal diagnostic care pathway to adopt after negative results with standard approaches. Methods: In 15 unsolved individuals clinically diagnosed with recognizable OMIM diseases but with negative or inconclusive first-line genetic results, we explored the utility of a multi-step approach using several novel omics technologies to establish a molecular diagnosis. Inclusion criteria included a clinical autosomal recessive disease diagnosis and single heterozygous pathogenic variant in the gene of interest identified by first-line analysis (60%-9/15) or a clinical diagnosis of an X-linked recessive or autosomal dominant disease with no causative variant identified (40%-6/15). We performed a multi-step analysis involving short-read genome sequencing (srGS) and complementary approaches such as mRNA sequencing (mRNA-seq), long-read genome sequencing (lrG), or optical genome mapping (oGM) selected according to the outcome of the GS analysis. Results: SrGS alone or in combination with additional genomic and/or transcriptomic technologies allowed us to resolve 87% of individuals by identifying single nucleotide variants/indels missed by first-line targeted tests, identifying variants affecting transcription, or structural variants sometimes requiring lrGS or oGM for their characterization. Conclusion: Hypothesis-driven implementation of combined omics technologies is particularly effective in identifying molecular etiologies. In this study, we detail our experience of the implementation of genomics and transcriptomics technologies in a pilot cohort of previously investigated patients with a typical clinical diagnosis without molecular etiology.

9.
Neurology ; 100(6): e603-e615, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36307226

RESUMEN

BACKGROUND AND OBJECTIVES: KCNH5 encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the neurodevelopmental and epilepsy phenotypic spectrum associated with de novo KCNH5 variants. METHODS: We screened 893 individuals with developmental and epileptic encephalopathies for KCNH5 variants using targeted or exome sequencing. Additional individuals with KCNH5 variants were identified through an international collaboration. Clinical history, EEG, and imaging data were analyzed; seizure types and epilepsy syndromes were classified. We included 3 previously published individuals including additional phenotypic details. RESULTS: We report a cohort of 17 patients, including 9 with a recurrent de novo missense variant p.Arg327His, 4 with a recurrent missense variant p.Arg333His, and 4 additional novel missense variants. All variants were located in or near the functionally critical voltage-sensing or pore domains, absent in the general population, and classified as pathogenic or likely pathogenic using the American College of Medical Genetics and Genomics criteria. All individuals presented with epilepsy with a median seizure onset at 6 months. They had a wide range of seizure types, including focal and generalized seizures. Cognitive outcomes ranged from normal intellect to profound impairment. Individuals with the recurrent p.Arg333His variant had a self-limited drug-responsive focal or generalized epilepsy and normal intellect, whereas the recurrent p.Arg327His variant was associated with infantile-onset DEE. Two individuals with variants in the pore domain were more severely affected, with a neonatal-onset movement disorder, early-infantile DEE, profound disability, and childhood death. DISCUSSION: We describe a cohort of 17 individuals with pathogenic or likely pathogenic missense variants in the voltage-sensing and pore domains of Kv10.2, including 14 previously unreported individuals. We present evidence for a putative emerging genotype-phenotype correlation with a spectrum of epilepsy and cognitive outcomes. Overall, we expand the role of EAG proteins in human disease and establish KCNH5 as implicated in a spectrum of neurodevelopmental disorders and epilepsy.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Canales de Potasio Éter-A-Go-Go , Niño , Humanos , Recién Nacido , Epilepsia/genética , Epilepsia Generalizada/genética , Mutación , Fenotipo , Convulsiones/genética , Canales de Potasio Éter-A-Go-Go/genética
10.
Genet Med ; 25(2): 100323, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36401616

RESUMEN

PURPOSE: Pathogenic variants in genes encoding ubiquitin E3 ligases are known to cause neurodevelopmental syndromes. Additional neurodevelopmental disorders associated with the other genes encoding E3 ligases are yet to be identified. METHODS: Chromosomal analysis and exome sequencing were used to identify the genetic causes in 10 patients from 7 unrelated families with syndromic neurodevelopmental, seizure, and movement disorders and neurobehavioral phenotypes. RESULTS: In total, 4 patients were found to have 3 different homozygous loss-of-function (LoF) variants, and 3 patients had 4 compound heterozygous missense variants in the candidate E3 ligase gene, HECTD4, that were rare, absent from controls as homozygous, and predicted to be deleterious in silico. In 3 patients from 2 families with Angelman-like syndrome, paralog-directed candidate gene approach detected 2 LoF variants in the other candidate E3 ligase gene, UBE3C, a paralog of the Angelman syndrome E3 ligase gene, UBE3A. The RNA studies in 4 patients with LoF variants in HECTD4 and UBE3C provided evidence for the LoF effect. CONCLUSION: HECTD4 and UBE3C are novel biallelic rare disease genes, expand the association of the other HECT E3 ligase group with neurodevelopmental syndromes, and could explain some of the missing heritability in patients with a suggestive clinical diagnosis of Angelman syndrome.


Asunto(s)
Síndrome de Angelman , Trastornos del Neurodesarrollo , Humanos , Síndrome de Angelman/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética , Trastornos del Neurodesarrollo/genética , Fenotipo
11.
J Med Genet ; 60(6): 578-586, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36319078

RESUMEN

PURPOSE: In this study, we describe the phenotype and genotype of the largest cohort of patients with Joubert syndrome (JS) carrying pathogenic variants on one of the most frequent causative genes, CC2D2A. METHODS: We selected 53 patients with pathogenic variants on CC2D2A, compiled and analysed their clinical, neuroimaging and genetic information and compared it to previous literature. RESULTS: Developmental delay (motor and language) was nearly constant but patients had normal intellectual efficiency in 74% of cases (20/27 patients) and 68% followed mainstream schooling despite learning difficulties. Epilepsy was found in only 13% of cases. Only three patients had kidney cysts, only three had genuine retinal dystrophy and no subject had liver fibrosis or polydactyly. Brain MRIs showed typical signs of JS with rare additional features. Genotype-phenotype correlation findings demonstrate a homozygous truncating variant p.Arg950* linked to a more severe phenotype. CONCLUSION: This study contradicts previous literature stating an association between CC2D2A-related JS and ventriculomegaly. Our study implies that CC2D2A-related JS is linked to positive neurodevelopmental outcome and low rate of other organ defects except for homozygous pathogenic variant p.Arg950*. This information will help modulate patient follow-up and provide families with accurate genetic counselling.


Asunto(s)
Anomalías Múltiples , Anomalías del Ojo , Enfermedades Renales Quísticas , Humanos , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Enfermedades Renales Quísticas/diagnóstico , Enfermedades Renales Quísticas/genética , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Anomalías del Ojo/diagnóstico , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Retina/diagnóstico por imagen , Retina/patología , Proteínas del Citoesqueleto
12.
Am J Hum Genet ; 109(12): 2270-2282, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36368327

RESUMEN

An Xq22.2 region upstream of PLP1 has been proposed to underly a neurological disease trait when deleted in 46,XX females. Deletion mapping revealed that heterozygous deletions encompassing the smallest region of overlap (SRO) spanning six Xq22.2 genes (BEX3, RAB40A, TCEAL4, TCEAL3, TCEAL1, and MORF4L2) associate with an early-onset neurological disease trait (EONDT) consisting of hypotonia, intellectual disability, neurobehavioral abnormalities, and dysmorphic facial features. None of the genes within the SRO have been associated with monogenic disease in OMIM. Through local and international collaborations facilitated by GeneMatcher and Matchmaker Exchange, we have identified and herein report seven de novo variants involving TCEAL1 in seven unrelated families: three hemizygous truncating alleles; one hemizygous missense allele; one heterozygous TCEAL1 full gene deletion; one heterozygous contiguous deletion of TCEAL1, TCEAL3, and TCEAL4; and one heterozygous frameshift variant allele. Variants were identified through exome or genome sequencing with trio analysis or through chromosomal microarray. Comparison with previously reported Xq22 deletions encompassing TCEAL1 identified a more-defined syndrome consisting of hypotonia, abnormal gait, developmental delay/intellectual disability especially affecting expressive language, autistic-like behavior, and mildly dysmorphic facial features. Additional features include strabismus, refractive errors, variable nystagmus, gastroesophageal reflux, constipation, dysmotility, recurrent infections, seizures, and structural brain anomalies. An additional maternally inherited hemizygous missense allele of uncertain significance was identified in a male with hypertonia and spasticity without syndromic features. These data provide evidence that TCEAL1 loss of function causes a neurological rare disease trait involving significant neurological impairment with features overlapping the EONDT phenotype in females with the Xq22 deletion.


Asunto(s)
Trastorno Autístico , Discapacidad Intelectual , Femenino , Humanos , Masculino , Trastorno Autístico/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Hipotonía Muscular/genética , Hipotonía Muscular/complicaciones , Fenotipo , Síndrome , Factores de Transcripción/genética
13.
Front Cell Dev Biol ; 10: 1021785, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36393831

RESUMEN

Purpose: Patients with rare or ultra-rare genetic diseases, which affect 350 million people worldwide, may experience a diagnostic odyssey. High-throughput sequencing leads to an etiological diagnosis in up to 50% of individuals with heterogeneous neurodevelopmental or malformation disorders. There is a growing interest in additional omics technologies in translational research settings to examine the remaining unsolved cases. Methods: We gathered 30 individuals with malformation syndromes and/or severe neurodevelopmental disorders with negative trio exome sequencing and array comparative genomic hybridization results through a multicenter project. We applied short-read genome sequencing, total RNA sequencing, and DNA methylation analysis, in that order, as complementary translational research tools for a molecular diagnosis. Results: The cohort was mainly composed of pediatric individuals with a median age of 13.7 years (4 years and 6 months to 35 years and 1 month). Genome sequencing alone identified at least one variant with a high level of evidence of pathogenicity in 8/30 individuals (26.7%) and at least a candidate disease-causing variant in 7/30 other individuals (23.3%). RNA-seq data in 23 individuals allowed two additional individuals (8.7%) to be diagnosed, confirming the implication of two pathogenic variants (8.7%), and excluding one candidate variant (4.3%). Finally, DNA methylation analysis confirmed one diagnosis identified by genome sequencing (Kabuki syndrome) and identified an episignature compatible with a BAFopathy in a patient with a clinical diagnosis of Coffin-Siris with negative genome and RNA-seq results in blood. Conclusion: Overall, our integrated genome, transcriptome, and DNA methylation analysis solved 10/30 (33.3%) cases and identified a strong candidate gene in 4/30 (13.3%) of the patients with rare neurodevelopmental disorders and negative exome sequencing results.

14.
Front Psychiatry ; 13: 864445, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463509

RESUMEN

Background: Mitochondrial disorders (MD) are metabolic diseases related to genetic mutations in mitochondrial DNA and nuclear DNA that cause dysfunction of the mitochondrial respiratory chain. Cognitive impairment and psychiatric symptoms are frequently associated with MD in the adult population. The aim of this study is to describe the neuropsychological profile in children and adolescents with MD. Methods: We prospectively recruited a sample of 12 children and adolescents between February 2019 and February 2020 in the Reference Center for Mitochondrial Disorders of Angers (France). Participants and their parents completed an anamnestic form describing socio-demographic data and completed the WISC-V (Wechsler Intelligence Scale for Children, 5th edition) and the Parent and Teacher forms of the BRIEF (Behavior Rating Inventory of Executive Function). Results: In our sample, the mean IQ (Intellectual Quotient) score was 87.3 ± 25.3. The score ranged from 52 to 120. Concerning executive functions, a significant global clinical complaint was found for parents (six times more than normal) and to a lesser extent, for teachers (among 3 to 4 times more). Levels of intelligence and executive functioning were globally linked in our cohort but dissociation remains a possibility. Conclusion: The results of this study show that MD can be associated to neuropsychological disorders in children and adolescents, especially regarding the intelligence quotient and the executive function. Our study also highlights the need for regular neuropsychological assessments in individuals with MD and developing brains, such as children and adolescents.

16.
Am J Hum Genet ; 109(4): 750-758, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35202563

RESUMEN

Chromatin is essentially an array of nucleosomes, each of which consists of the DNA double-stranded fiber wrapped around a histone octamer. This organization supports cellular processes such as DNA replication, DNA transcription, and DNA repair in all eukaryotes. Human histone H4 is encoded by fourteen canonical histone H4 genes, all differing at the nucleotide level but encoding an invariant protein. Here, we present a cohort of 29 subjects with de novo missense variants in six H4 genes (H4C3, H4C4, H4C5, H4C6, H4C9, and H4C11) identified by whole-exome sequencing and matchmaking. All individuals present with neurodevelopmental features of intellectual disability and motor and/or gross developmental delay, while non-neurological features are more variable. Ten amino acids are affected, six recurrently, and are all located within the H4 core or C-terminal tail. These variants cluster to specific regions of the core H4 globular domain, where protein-protein interactions occur with either other histone subunits or histone chaperones. Functional consequences of the identified variants were evaluated in zebrafish embryos, which displayed abnormal general development, defective head organs, and reduced body axis length, providing compelling evidence for the causality of the reported disorder(s). While multiple developmental syndromes have been linked to chromatin-associated factors, missense-bearing histone variants (e.g., H3 oncohistones) are only recently emerging as a major cause of pathogenicity. Our findings establish a broader involvement of H4 variants in developmental syndromes.


Asunto(s)
Histonas , Pez Cebra , Animales , Cromatina , ADN , Histonas/metabolismo , Humanos , Síndrome , Pez Cebra/genética , Pez Cebra/metabolismo
17.
Hum Genet ; 141(1): 65-80, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34748075

RESUMEN

Pathogenic variants of the myelin transcription factor-1 like (MYT1L) gene include heterozygous missense, truncating variants and 2p25.3 microdeletions and cause a syndromic neurodevelopmental disorder (OMIM#616,521). Despite enrichment in de novo mutations in several developmental disorders and autism studies, the data on clinical characteristics and genotype-phenotype correlations are scarce, with only 22 patients with single nucleotide pathogenic variants reported. We aimed to further characterize this disorder at both the clinical and molecular levels by gathering a large series of patients with MYT1L-associated neurodevelopmental disorder. We collected genetic information on 40 unreported patients with likely pathogenic/pathogenic MYT1L variants and performed a comprehensive review of published data (total = 62 patients). We confirm that the main phenotypic features of the MYT1L-related disorder are developmental delay with language delay (95%), intellectual disability (ID, 70%), overweight or obesity (58%), behavioral disorders (98%) and epilepsy (23%). We highlight novel clinical characteristics, such as learning disabilities without ID (30%) and feeding difficulties during infancy (18%). We further describe the varied dysmorphic features (67%) and present the changes in weight over time of 27 patients. We show that patients harboring highly clustered missense variants in the 2-3-ZNF domains are not clinically distinguishable from patients with truncating variants. We provide an updated overview of clinical and genetic data of the MYT1L-associated neurodevelopmental disorder, hence improving diagnosis and clinical management of these patients.


Asunto(s)
Variación Genética , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Adolescente , Adulto , Niño , Preescolar , Epilepsia/genética , Trastornos de Alimentación y de la Ingestión de Alimentos/genética , Femenino , Estudios de Asociación Genética , Heterocigoto , Humanos , Lactante , Trastornos del Desarrollo del Lenguaje/genética , Masculino , Obesidad/genética , Fenotipo , Adulto Joven
18.
Nat Genet ; 54(1): 62-72, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34903892

RESUMEN

The vertebrate left-right axis is specified during embryogenesis by a transient organ: the left-right organizer (LRO). Species including fish, amphibians, rodents and humans deploy motile cilia in the LRO to break bilateral symmetry, while reptiles, birds, even-toed mammals and cetaceans are believed to have LROs without motile cilia. We searched for genes whose loss during vertebrate evolution follows this pattern and identified five genes encoding extracellular proteins, including a putative protease with hitherto unknown functions that we named ciliated left-right organizer metallopeptide (CIROP). Here, we show that CIROP is specifically expressed in ciliated LROs. In zebrafish and Xenopus, CIROP is required solely on the left side, downstream of the leftward flow, but upstream of DAND5, the first asymmetrically expressed gene. We further ascertained 21 human patients with loss-of-function CIROP mutations presenting with recessive situs anomalies. Our findings posit the existence of an ancestral genetic module that has twice disappeared during vertebrate evolution but remains essential for distinguishing left from right in humans.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo , Redes Reguladoras de Genes , Metaloproteasas , Animales , Humanos , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Cilios/genética , Mutación con Pérdida de Función , Metaloproteasas/genética , Metaloproteasas/fisiología , Proteínas/genética , Proteínas/fisiología , Vertebrados/genética
20.
Genet Med ; 24(1): 179-191, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906456

RESUMEN

PURPOSE: Haploinsufficiency of PSMD12 has been reported in individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), facial dysmorphism, and congenital malformations, defined as Stankiewicz-Isidor syndrome (STISS). Investigations showed that pathogenic variants in PSMD12 perturb intracellular protein homeostasis. Our objective was to further explore the clinical and molecular phenotypic spectrum of STISS. METHODS: We report 24 additional unrelated patients with STISS with various truncating single nucleotide variants or copy-number variant deletions involving PSMD12. We explore disease etiology by assessing patient cells and CRISPR/Cas9-engineered cell clones for various cellular pathways and inflammatory status. RESULTS: The expressivity of most clinical features in STISS is highly variable. In addition to previously reported DD/ID, speech delay, cardiac and renal anomalies, we also confirmed preaxial hand abnormalities as a feature of this syndrome. Of note, 2 patients also showed chilblains resembling signs observed in interferonopathy. Remarkably, our data show that STISS patient cells exhibit a profound remodeling of the mTORC1 and mitophagy pathways with an induction of type I interferon-stimulated genes. CONCLUSION: We refine the phenotype of STISS and show that it can be clinically recognizable and biochemically diagnosed by a type I interferon gene signature.


Asunto(s)
Discapacidad Intelectual , Trastornos del Desarrollo del Lenguaje , Anomalías Musculoesqueléticas , Haploinsuficiencia , Humanos , Discapacidad Intelectual/diagnóstico , Trastornos del Desarrollo del Lenguaje/genética , Anomalías Musculoesqueléticas/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...