Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Vet Sci ; 11: 1399772, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756515

RESUMEN

Canine leishmaniosis, caused by the protozoan parasite Leishmania infantum, is a cosmopolitan vector-borne zoonosis, transmitted principally by Phlebotomus perniciosus in Spain and Portugal, where it is considered an endemic disease. Ecoinformatics tools such as ecological niche models (ENM) have been successfully tested to model the distribution of the risk of infection of different parasitosis as they take into account environmental variables vital for their survival. The risk map proposed in this study combines the potential distribution of Ph. perniciosus in the Iberian Peninsula and the calculation of the infection rate of the parasite in the vector to model the risk of contracting the disease in a more realistic way. In fact, this weighting strategy improves the predictive power of the resulting model (R2 = 0.42, p = < 0.01) compared to the Ph. perniciosus ENM model alone (R2 = 0.13, p > 0.05). The places with the highest risk of transmission are the southwest and central peninsular area, as well as the Mediterranean coast, the Balearic Islands and the Ebro basin, places where the ideal habitat of Ph. perniciosus and the infection rate is also high. In the case of future projections under climate change scenarios, an increase in the risk of infection by L. infantum can be observed in most of the territory (4.5% in 2040, 71.6% in 2060 and 63% in 2080), mainly in the northern part of the peninsula. The use of ENMs and their weighting with the infection rate in Ph. perniciosus is a useful tool in predicting the risk of infection for L. infantum in dogs for a given area. In this way, a more complete model can be obtained to facilitate prevention and control.

2.
Front Vet Sci ; 11: 1352236, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38634104

RESUMEN

Animal and human dirofilariosis is a vector-borne zoonotic disease, being one of the most important diseases in Europe. In Serbia, there are extensive studies reporting the presence of Dirofilaria immitis and D. repens, mainly in the north of the country, where the human population is concentrated and where there is a presence of culicid mosquitoes that transmit the disease. Ecological niche modeling (ENM) has proven to be a very good tool to predict the appearance of parasitosis in very diverse areas, with distant orography and climatologies at a local, continental, and global level. Taking these factors into account, the objective of this study was to develop an environmental model for Serbia that reflects the suitability of the ecological niche for the risk of infection with Dirofilaria spp. with which the predictive power of existing studies is improved. A wide set of variables related to the transmission of the parasite were used. The potential number of generations of D. immitis and the ecological niche modeling method (ENM) were used to estimate the potential distribution of suitable habitats for Culex pipiens. The highest probability of infection risk was located in the north of the country, and the lowest in the southern regions, where there is more orographic relief and less human activity. The model was corroborated with the location of D. immitis-infected dogs, with 89.28% of the country having a high probability of infection. In addition, it was observed that the percentage of territory with optimal habitat for Culex spp. will increase significantly between now and 2080. This new model can be used as a tool in the control and prevention of heartworm disease in Serbia, due to its high predictive power, and will serve to alert veterinary and health personnel of the presence of the disease in the animal and human population, respectively.

3.
Vet Parasitol ; 328: 110172, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547829

RESUMEN

Vector-borne diseases continue to increase worldwide. Dirofilariosis is one of the most common vector-borne zoonotic diseases, mainly caused by Dirofilaria spp. (D. immitis and D. repens) and spread by culicid mosquitoes of different species. Greece is one of the countries in southern Europe where it is traditionally endemic, and its distribution is not homogeneous. The aim of this study was to develop an environmental model for Greece that reflects the suitability of the ecological niche for Dirofilaria spp. infection risk and its projection until 2080. For this purpose, we used the potential distribution of suitable habitats for Culex pipiens calculated using an ecological niche model (ENM) and the potential number of generations of Dirofilaria spp. The ecological niche model of Cx. pipiens in Greece showed good predictive power (AUC=0.897) with the parasite at a resolution of 1 km2. The variables that contributed most to the model were mean annual temperature, rivers and human footprint. The highest risk of infection was found in coastal areas and in riverside areas of the main river basins, as well as in irrigated areas of the mainland and peninsular regions and in the whole territory of island areas, and the lowest risk was found in areas of higher altitude. A positive relationship was found between the risk of dirofilariosis and the location of infected dogs, with 86.65% located in very high and high risk areas. In 2080, the percentage of territory gained by Cx. pipiens will increase by 261.52%. This model provides a high predictive value, predicted presence, and risk of Dirofilaria spp. infection and can serve as a tool for the management and control of this disease.


Asunto(s)
Culex , Dirofilariasis , Ecosistema , Animales , Grecia/epidemiología , Dirofilariasis/epidemiología , Dirofilariasis/parasitología , Culex/parasitología , Dirofilaria , Perros , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/parasitología , Humanos , Modelos Biológicos , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...