Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Conserv Biol ; 35(2): 492-501, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32557849

RESUMEN

Global biodiversity indices are used to measure environmental change and progress toward conservation goals, yet few indices have been evaluated comprehensively for their capacity to detect trends of interest, such as declines in threatened species or ecosystem function. Using a structured approach based on decision science, we qualitatively evaluated 9 indices commonly used to track biodiversity at global and regional scales against 5 criteria relating to objectives, design, behavior, incorporation of uncertainty, and constraints (e.g., costs and data availability). Evaluation was based on reference literature for indices available at the time of assessment. We identified 4 key gaps in indices assessed: pathways to achieving goals (means objectives) were not always clear or relevant to desired outcomes (fundamental objectives); index testing and understanding of expected behavior was often lacking; uncertainty was seldom acknowledged or accounted for; and costs of implementation were seldom considered. These gaps may render indices inadequate in certain decision-making contexts and are problematic for indices linked with biodiversity targets and sustainability goals. Ensuring that index objectives are clear and their design is underpinned by a model of relevant processes are crucial in addressing the gaps identified by our assessment. Uptake and productive use of indices will be improved if index performance is tested rigorously and assumptions and uncertainties are clearly communicated to end users. This will increase index accuracy and value in tracking biodiversity change and supporting national and global policy decisions, such as the post-2020 global biodiversity framework of the Convention on Biological Diversity.


Uso de las Ciencias de la Decisión para Evaluar los Índices Globales de Biodiversidad Resumen Los índices globales de biodiversidad se usan para medir el cambio ambiental y el avance hacia los objetivos de conservación, aunque pocos han sido evaluados completamente en cuanto a su capacidad para detectar las tendencias de interés como las declinaciones de especies amenazadas o la función del ecosistema. Evaluamos cualitativamente nueve índices de uso común para dar seguimiento a la biodiversidad a escala global y regional contra cinco criterios relacionados con los objetivos, diseño, comportamiento, incorporación de la incertidumbre y restricciones (p. ej.: costos y disponibilidad de datos) mediante una estrategia estructurada basada en las ciencias de la decisión. La evaluación se basó en la literatura de referencia para los índices disponibles al momento del análisis. Identificamos cuatro vacíos importantes en los índices estudiados: las vías para lograr los objetivos (objetivos medios) no fueron siempre claras o relevantes para los resultados deseados (objetivos fundamentales); el análisis del índice y el entendimiento del comportamiento esperado casi siempre fueron escasos; pocas veces se consideró o explicó la incertidumbre; y casi nunca se consideraron los costos de la implementación. Estos vacíos pueden hacer que los índices sean inadecuados en ciertos contextos de toma de decisiones y son problemáticos para los índices vinculados a los objetivos de biodiversidad y las metas de sustentabilidad. Es de suma importancia asegurarse que los objetivos del índice sean claros y que su diseño esté respaldado por un modelo de procesos relevantes para tratar con los vacíos identificados en nuestro estudio. La aceptación y el uso productivo de los índices mejorarán si el desempeño del índice es evaluado rigurosamente y las suposiciones e incertidumbres se les comunican claramente a los usuarios finales. Lo anterior aumentará la precisión y valor del índice en el seguimiento de los cambios de la biodiversidad y en el apoyo a las decisiones políticas nacionales y mundiales, como el marco de trabajo para la biodiversidad post-2020 establecido por la Convención sobre la Diversidad Biológica.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Biodiversidad , Especies en Peligro de Extinción , Incertidumbre
2.
Nat Ecol Evol ; 4(3): 384-392, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32066888

RESUMEN

Large-scale biodiversity changes are measured mainly through the responses of a few taxonomic groups. Much less is known about the trends affecting most invertebrates and other neglected taxa, and it is unclear whether well-studied taxa, such as vertebrates, reflect changes in wider biodiversity. Here, we present and analyse trends in the UK distributions of over 5,000 species of invertebrates, bryophytes and lichens, measured as changes in occupancy. Our results reveal substantial variation in the magnitude, direction and timing of changes over the last 45 years. Just one of the four major groups analysed, terrestrial non-insect invertebrates, exhibits the declining trend reported among vertebrates and butterflies. Both terrestrial insects and the bryophytes and lichens group increased in average occupancy. A striking pattern is found among freshwater species, which have undergone a strong recovery since the mid-1990s after two decades of decline. We show that, while average occupancy among most groups appears to have been stable or increasing, there has been substantial change in the relative commonness and rarity of individual species, indicating considerable turnover in community composition. Additionally, large numbers of species have experienced substantial declines. Our results suggest a more complex pattern of biodiversity change in the United Kingdom than previously reported.


Asunto(s)
Mariposas Diurnas , Líquenes , Animales , Biodiversidad , Ecosistema , Reino Unido
3.
Philos Trans R Soc Lond B Biol Sci ; 374(1788): 20190216, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31679489

RESUMEN

Long-term faunal data are needed to track biodiversity change and extinction over wide spatio-temporal scales. The Holocene record is a particularly rich and well-resolved resource for this purpose but nonetheless represents a biased subset of the original faunal composition, both at the site-level assemblage and when data are pooled for wider-scale analysis. We investigated patterns and potential sources of taxonomic, spatial and temporal bias in two Holocene datasets of mammalian occurrence and abundance, one at the global species level and one at the continental population-level. Larger-bodied species are disproportionately abundant in the Holocene fossil record, but this varies according to trophic level, probably owing to past patterns of human subsistence and exploitation. Despite the uneven spatial distribution of mammalian occurrence records, we found no specific source of sampling bias, suggesting that this error type can be avoided by intensive data collection protocols. Faunal assemblages are more abundant and precisely dated nearer to the present as a consequence of taphonomy, past human demography and dating methods. Our study represents one of the first attempts to quantify incompleteness and bias in the Holocene mammal record, and failing to critically assess the quality of long-term faunal datasets has major implications for understanding species decline and extinction risk. This article is part of a discussion meeting issue 'The past is a foreign country: how much can the fossil record actually inform conservation?'


Asunto(s)
Distribución Animal , Biodiversidad , Mamíferos , Animales , Extinción Biológica , Fósiles , Paleontología
4.
People Nat (Hoboken) ; 1(3): 305-316, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34901763

RESUMEN

The UN Sustainable Development Goals (SDGs) include economic, social and environmental dimensions of human development and make explicit commitments to all of life on Earth. Evidence of continuing global biodiversity loss has, at the same time, led to a succession of internationally agreed conservation targets.With multiple targets (even within one policy realm, e.g. the CBD Aichi Targets for biodiversity), it is possible for different indicators to respond in the same direction, in opposite directions or to show no particular relationship. When considering the different sectors of the SDGs, there are many possible relationships among indicators that have been widely discussed, but rarely analysed in detail.Here, we present a comparative cross-national analysis exploring temporally integrated linkages between human development indicators and wildlife conservation trends.The results suggest that in lower income countries there are negative relationships between measures of human population growth and bird and mammal population abundance trends outside protected areas.The results also suggest a positive relationship between economic growth and wildlife population trends in lower income countries. We stress, however, the need for future research to further explore the relationships between economic growth and natural resource-based imports.Our results highlight a clear potential for compatibility of the conservation and development agendas and support the need for further integration among sustainable development strategies. A free Plain Language Summary can be found within the Supporting Information of this article.

5.
Ecol Evol ; 8(16): 8286-8296, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30250703

RESUMEN

Variation in the phenology of avian taxa has long been studied to understand how a species reacts to environmental changes over both space and time. Penguins (Sphenicidae) serve as an important example of how biotic and abiotic factors influence certain stages of seabird phenology because of their large ranges and the extreme, dynamic conditions present in their Southern Ocean habitats. Here, we examined the phenology of gentoo (Pygoscelis papua) and chinstrap penguins (Pygoscelis antarctica) at 17 sites across the Scotia arc, including the first documented monitoring of phenology on the South Sandwich Islands, to determine which breeding phases are intrinsic, or rather vary across a species range and between years. We used a novel method to measure seabird breeding phenology and egg and chick survival: time-lapse cameras. Contrary to the long-standing theory that these phases are consistent between colonies, we found that latitude and season had a predominant influence on the length of the nest establishment, incubation, and guard durations. We observe a trend toward longer incubation times occurring farther south, where ambient temperatures are colder, which may indicate that exposure to cold slows embryo growth. Across species, in colonies located farther south, parents abandoned nests later when eggs were lost or chicks died and the latest record of eggs or chicks in the nest occurred earlier during the breeding period. The variation in both space and time observed in penguin phenology provides evidence that the duration of phases within the annual cycle of birds is not fundamental, or genetic, as previously understood. Additionally, the recorded phenology dates should inform field researchers on the best timing to count colonies at the peak of breeding, which is poorly understood.

6.
Conserv Biol ; 32(2): 366-375, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28856725

RESUMEN

Conservation requires successful outcomes. However, success is perceived in many different ways depending on the desired outcome. Through a questionnaire survey, we examined perceptions of success among 355 scientists and practitioners working on amphibian conservation from over 150 organizations in more than 50 countries. We also sought to identify how different types of conservation actions and respondent experience and background influenced perceptions. Respondents identified 4 types of success: species and habitat improvements (84% of respondents); effective program management (36%); outreach initiatives such as education and public engagement (25%); and the application of science-based conservation (15%). The most significant factor influencing overall perceived success was reducing threats. Capacity building was rated least important. Perceptions were influenced by experience, professional affiliation, involvement in conservation practice, and country of residence. More experienced practitioners associated success with improvements to species and habitats and less so with education and engagement initiatives. Although science-based conservation was rated as important, this factor declined in importance as the number of programs a respondent participated in increased, particularly among those from less economically developed countries. The ultimate measure of conservation success-population recovery-may be difficult to measure in many amphibians; difficult to relate to the conservation actions intended to drive it; and difficult to achieve within conventional funding time frames. The relaunched Amphibian Conservation Action Plan provides a framework for capturing lower level processes and outcomes, identifying gaps, and measuring progress.


Asunto(s)
Anfibios , Conservación de los Recursos Naturales , Animales , Ecosistema
8.
Nat Ecol Evol ; 1(11): 1677-1682, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28993667

RESUMEN

The distributions of amphibians, birds and mammals have underpinned global and local conservation priorities, and have been fundamental to our understanding of the determinants of global biodiversity. In contrast, the global distributions of reptiles, representing a third of terrestrial vertebrate diversity, have been unavailable. This prevented the incorporation of reptiles into conservation planning and biased our understanding of the underlying processes governing global vertebrate biodiversity. Here, we present and analyse the global distribution of 10,064 reptile species (99% of extant terrestrial species). We show that richness patterns of the other three tetrapod classes are good spatial surrogates for species richness of all reptiles combined and of snakes, but characterize diversity patterns of lizards and turtles poorly. Hotspots of total and endemic lizard richness overlap very little with those of other taxa. Moreover, existing protected areas, sites of biodiversity significance and global conservation schemes represent birds and mammals better than reptiles. We show that additional conservation actions are needed to effectively protect reptiles, particularly lizards and turtles. Adding reptile knowledge to a global complementarity conservation priority scheme identifies many locations that consequently become important. Notably, investing resources in some of the world's arid, grassland and savannah habitats might be necessary to represent all terrestrial vertebrates efficiently.


Asunto(s)
Distribución Animal , Biodiversidad , Conservación de los Recursos Naturales , Reptiles , Animales
9.
Nat Ecol Evol ; 1(11): 1785, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29046563

RESUMEN

In this Article originally published, owing to a technical error, the author 'Laurent Chirio' was mistakenly designated as a corresponding author in the HTML version, the PDF was correct. This error has now been corrected in the HTML version. Further, in Supplementary Table 3, the authors misspelt the surname of 'Danny Meirte'; this file has now been replaced.

10.
PLoS Biol ; 15(3): e2001656, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28350825

RESUMEN

The Strategic Plan for Biodiversity, adopted under the auspices of the Convention on Biological Diversity, provides the basis for taking effective action to curb biodiversity loss across the planet by 2020-an urgent imperative. Yet, Antarctica and the Southern Ocean, which encompass 10% of the planet's surface, are excluded from assessments of progress against the Strategic Plan. The situation is a lost opportunity for biodiversity conservation globally. We provide such an assessment. Our evidence suggests, surprisingly, that for a region so remote and apparently pristine as the Antarctic, the biodiversity outlook is similar to that for the rest of the planet. Promisingly, however, much scope for remedial action exists.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/tendencias , Regiones Antárticas , Conservación de los Recursos Naturales/métodos
11.
PLoS Biol ; 15(1): e2000942, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28081142

RESUMEN

Alien species are a major component of human-induced environmental change. Variation in the numbers of alien species found in different areas is likely to depend on a combination of anthropogenic and environmental factors, with anthropogenic factors affecting the number of species introduced to new locations, and when, and environmental factors influencing how many species are able to persist there. However, global spatial and temporal variation in the drivers of alien introduction and species richness remain poorly understood. Here, we analyse an extensive new database of alien birds to explore what determines the global distribution of alien species richness for an entire taxonomic class. We demonstrate that the locations of origin and introduction of alien birds, and their identities, were initially driven largely by European (mainly British) colonialism. However, recent introductions are a wider phenomenon, involving more species and countries, and driven in part by increasing economic activity. We find that, globally, alien bird species richness is currently highest at midlatitudes and is strongly determined by anthropogenic effects, most notably the number of species introduced (i.e., "colonisation pressure"). Nevertheless, environmental drivers are also important, with native and alien species richness being strongly and consistently positively associated. Our results demonstrate that colonisation pressure is key to understanding alien species richness, show that areas of high native species richness are not resistant to colonisation by alien species at the global scale, and emphasise the likely ongoing threats to global environments from introductions of species.


Asunto(s)
Biodiversidad , Aves/fisiología , Internacionalidad , Especies Introducidas , Animales , Producto Interno Bruto , Especificidad de la Especie , Factores de Tiempo
12.
Conserv Biol ; 31(3): 531-539, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27696559

RESUMEN

One in 6 species (13,465 species) on the International Union for Conservation of Nature (IUCN) Red List is classified as data deficient due to lack of information on their taxonomy, population status, or impact of threats. Despite the chance that many are at high risk of extinction, data-deficient species are typically excluded from global and local conservation priorities, as well as funding schemes. The number of data-deficient species will greatly increase as the IUCN Red List becomes more inclusive of poorly known and speciose groups. A strategic approach is urgently needed to enhance the conservation value of data-deficient assessments. To develop this, we reviewed 2879 data-deficient assessments in 6 animal groups and identified 8 main justifications for assigning data-deficient status (type series, few records, old records, uncertain provenance, uncertain population status or distribution, uncertain threats, taxonomic uncertainty, and new species). Assigning a consistent set of justification tags (i.e., consistent assignment to assessment justifications) to species classified as data deficient is a simple way to achieve more strategic assessments. Such tags would clarify the causes of data deficiency; facilitate the prediction of extinction risk; facilitate comparisons of data deficiency among taxonomic groups; and help prioritize species for reassessment. With renewed efforts, it could be straightforward to prevent thousands of data-deficient species slipping unnoticed toward extinction.


Asunto(s)
Conservación de los Recursos Naturales , Recolección de Datos , Especies en Peligro de Extinción , Incertidumbre , Animales , Extinción Biológica , Riesgo
13.
Nat Commun ; 7: 12747, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27582180

RESUMEN

Ensuring that protected areas (PAs) maintain the biodiversity within their boundaries is fundamental in achieving global conservation goals. Despite this objective, wildlife abundance changes in PAs are patchily documented and poorly understood. Here, we use linear mixed effect models to explore correlates of population change in 1,902 populations of birds and mammals from 447 PAs globally. On an average, we find PAs are maintaining populations of monitored birds and mammals within their boundaries. Wildlife population trends are more positive in PAs located in countries with higher development scores, and for larger-bodied species. These results suggest that active management can consistently overcome disadvantages of lower reproductive rates and more severe threats experienced by larger species of birds and mammals. The link between wildlife trends and national development shows that the social and economic conditions supporting PAs are critical for the successful maintenance of their wildlife populations.


Asunto(s)
Animales Salvajes , Conservación de los Recursos Naturales/métodos , Demografía/tendencias , Estudios de Tiempo y Movimiento , Animales , Biodiversidad , Aves , Demografía/métodos , Ecosistema , Mamíferos , Modelos Biológicos
14.
Nature ; 537(7621): 488, 2016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27652555
15.
Biol Lett ; 12(4)2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27072401

RESUMEN

The identification of species at risk of extinction is a central goal of conservation. As the use of data compiled for IUCN Red List assessments expands, a number of misconceptions regarding the purpose, application and use of the IUCN Red List categories and criteria have arisen. We outline five such classes of misconception; the most consequential drive proposals for adapted versions of the criteria, rendering assessments among species incomparable. A key challenge for the future will be to recognize the point where understanding has developed so markedly that it is time for the next generation of the Red List criteria. We do not believe we are there yet but, recognizing the need for scrutiny and continued development of Red Listing, conclude by suggesting areas where additional research could be valuable in improving the understanding of extinction risk among species.


Asunto(s)
Especies en Peligro de Extinción , Extinción Biológica , Medición de Riesgo/métodos , Animales , Conservación de los Recursos Naturales , Eucariontes , Dinámica Poblacional
16.
PLoS One ; 11(2): e0145676, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26840252

RESUMEN

Aggregations of young animals are common in a range of endothermic and ectothermic species, yet the adaptive behavior may depend on social circumstance and local conditions. In penguins, many species form aggregations (aka. crèches) for a variety of purposes, whilst others have never been observed exhibiting this behavior. Those that do form aggregations do so for three known benefits: 1) reduced thermoregulatory requirements, 2) avoidance of unrelated-adult aggression, and 3) lower predation risk. In gentoo penguins, Pygoscelis papua, chick aggregations are known to form during the post-guard period, yet the cause of these aggregations is poorly understood. Here, for the first time, we study aggregation behavior in gentoo penguins, examining four study sites along a latitudinal gradient using time-lapse cameras to examine the adaptive benefit of aggregations to chicks. Our results support the idea that aggregations of gentoo chicks decrease an individual's energetic expenditure when wet, cold conditions are present. However, we found significant differences in aggregation behavior between the lowest latitude site, Maiviken, South Georgia, and two of the higher latitude sites on the Antarctic Peninsula, suggesting this behavior may be colony specific. We provide strong evidence that more chicks aggregate and a larger number of aggregations occur on South Georgia, while the opposite occurs at Petermann Island in Antarctica. Future studies should evaluate multiple seabird colonies within one species before generalizing behaviors based on one location, and past studies may need to be re-evaluated to determine whether chick aggregation and other behaviors are in fact exhibited species-wide.


Asunto(s)
Conducta Animal , Spheniscidae/fisiología , Adaptación Fisiológica , Envejecimiento/fisiología , Animales , Regiones Antárticas , Regulación de la Temperatura Corporal , Frío , Ecología , Spheniscidae/crecimiento & desarrollo
17.
Proc Biol Sci ; 282(1813): 20150928, 2015 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-26246547

RESUMEN

Global commitments to halt biodiversity decline mean that it is essential to monitor species' extinction risk. However, the work required to assess extinction risk is intensive. We demonstrate an alternative approach to monitoring extinction risk, based on the response of species to external conditions. Using retrospective International Union for Conservation of Nature Red List assessments, we classify transitions in the extinction risk of 497 mammalian carnivores and ungulates between 1975 and 2013. Species that moved to lower Red List categories, or remained Least Concern, were classified as 'lower risk'; species that stayed in a threatened category, or moved to a higher category of risk, were classified as 'higher risk'. Twenty-four predictor variables were used to predict transitions, including intrinsic traits (species biology) and external conditions (human pressure, distribution state and conservation interventions). The model correctly classified up to 90% of all transitions and revealed complex interactions between variables, such as protected areas (PAs) versus human impact. The most important predictors were: past extinction risk, PA extent, geographical range size, body size, taxonomic family and human impact. Our results suggest that monitoring a targeted set of metrics would efficiently identify species facing a higher risk, and could guide the allocation of resources between monitoring species' extinction risk and monitoring external conditions.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Especies en Peligro de Extinción , Extinción Biológica , Mamíferos/fisiología , Animales , Biodiversidad , Modelos Biológicos , Medición de Riesgo/métodos
18.
Conserv Biol ; 29(5): 1290-302, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25981192

RESUMEN

To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a pragmatic approach, followed by rigorous testing of specific technology transfer metrics submitted by CBD signatories in a standardized manner may in turn improve the focus of future targets on technology transfer for biodiversity conservation.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Difusión de la Información , Transferencia de Tecnología , Cooperación Internacional , Terminología como Asunto
19.
Nature ; 520(7545): 45-50, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25832402

RESUMEN

Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.


Asunto(s)
Biodiversidad , Actividades Humanas , Animales , Conservación de los Recursos Naturales/tendencias , Ecología/tendencias , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Modelos Biológicos , Dinámica Poblacional , Especificidad de la Especie
20.
PLoS One ; 10(4): e0126004, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25875218

RESUMEN

Caribbean coral reefs are becoming structurally simpler, largely due to human impacts. The consequences of this trend for reef-associated communities are currently unclear, but expected to be profound. Here, we assess whether changes in fish assemblages have been non-random over several decades of declining reef structure. More specifically, we predicted that species that depend exclusively on coral reef habitat (i.e., habitat specialists) should be at a disadvantage compared to those that use a broader array of habitats (i.e., habitat generalists). Analysing 3727 abundance trends of 161 Caribbean reef-fishes, surveyed between 1980 and 2006, we found that the trends of habitat-generalists and habitat-specialists differed markedly. The abundance of specialists started to decline in the mid-1980s, reaching a low of ~60% of the 1980 baseline by the mid-1990s. Both the average and the variation in abundance of specialists have increased since the early 2000s, although the average is still well below the baseline level of 1980. This modest recovery occurred despite no clear evidence of a regional recovery in coral reef habitat quality in the Caribbean during the 2000s. In contrast, the abundance of generalist fishes remained relatively stable over the same three decades. Few specialist species are fished, thus their population declines are most likely linked to habitat degradation. These results mirror the observed trends of replacement of specialists by generalists, observed in terrestrial taxa across the globe. A significant challenge that arises from our findings is now to investigate if, and how, such community-level changes in fish populations affect ecosystem function.


Asunto(s)
Arrecifes de Coral , Peces/fisiología , Animales , Región del Caribe , Bases de Datos Factuales , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...