Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
JAMA Netw Open ; 7(4): e247822, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38652476

RESUMEN

Importance: A SARS-CoV-2 vaccine was approved for adolescents aged 12 to 15 years on May 10, 2021, with approval for younger age groups following thereafter. The population level impact of the pediatric COVID-19 vaccination program has not yet been established. Objective: To identify whether California's pediatric COVID-19 immunization program was associated with changes in pediatric COVID-19 incidence and hospitalizations. Design, Setting, and Participants: A case series on COVID-19 vaccination including children aged 6 months to 15 years was conducted in California. Data were obtained on COVID-19 cases in California between April 1, 2020, and February 27, 2023. Exposure: Postvaccination evaluation periods spanned 141 days (June 10 to October 29, 2021) for adolescents aged 12 to 15 years, 199 days (November 29, 2021, to June 17, 2022) for children aged 5 to 11 years, and 225 days (July 17, 2022, to February 27, 2023) for those aged 6 to 59 months. During these periods, statewide vaccine coverage reached 53.5% among adolescents aged 12 to 15 years, 34.8% among children aged 5 to 11 years, and 7.9% among those aged 6 to 59 months. Main Outcomes and Measures: Age-stepped implementation of COVID-19 vaccination was used to compare observed county-level incidence and hospitalization rates during periods when each age group became vaccine eligible to counterfactual rates predicted from observations among other age groups. COVID-19 case and hospitalization data were obtained from the California reportable disease surveillance system. Results: Between April 1, 2020, and February 27, 2023, a total of 3 913 063 pediatric COVID-19 cases and 12 740 hospitalizations were reported in California. Reductions of 146 210 cases (95% prediction interval [PI], 136 056-158 948) were estimated among adolescents aged 12 to 15 years, corresponding to a 37.1% (35.5%-39.1%) reduction from counterfactual predictions. Reductions of 230 134 (200 170-265 149) cases were estimated among children aged 5 to 11 years, corresponding to a 23.7% (20.6%-27.3%) reduction from counterfactual predictions. No evidence of reductions in COVID-19 cases statewide were found among children aged 6 to 59 months (estimated averted cases, -259; 95% PI, -1938 to 1019), although low transmission during the evaluation period may have limited the ability to do so. An estimated 168 hospitalizations (95% PI, 42-324) were averted among children aged 6 to 59 months, corresponding to a 24.4% (95% PI, 6.1%-47.1%) reduction. In meta-analyses, county-level vaccination coverage was associated with averted cases for all age groups. Despite low vaccination coverage, pediatric COVID-19 immunization in California averted 376 085 (95% PI, 348 355-417 328) reported cases and 273 (95% PI, 77-605) hospitalizations among children aged 6 months to 15 years over approximately 4 to 7 months following vaccination availability. Conclusions and Relevance: The findings of this case series analysis of 3 913 063 cases suggest reduced pediatric SARS-CoV-2 transmission following immunization. These results support the use of COVID-19 vaccines to reduce COVID-19 incidence and hospitalization in pediatric populations.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Hospitalización , SARS-CoV-2 , Humanos , COVID-19/prevención & control , COVID-19/epidemiología , Niño , Adolescente , Hospitalización/estadística & datos numéricos , Incidencia , Preescolar , California/epidemiología , Vacunas contra la COVID-19/uso terapéutico , Lactante , Femenino , Masculino , Vacunación/estadística & datos numéricos , Programas de Inmunización
2.
Front Public Health ; 11: 1287678, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38106890

RESUMEN

Introduction: Given the rapid geographic spread of dengue and the growing frequency and intensity of heavy rainfall events, it is imperative to understand the relationship between these phenomena in order to propose effective interventions. However, studies exploring the association between heavy rainfall and dengue infection risk have reached conflicting conclusions, potentially due to the neglect of prior water availability in mosquito breeding sites as an effect modifier. Methods: In this study, we addressed this research gap by considering the impact of prior water availability for the first time. We measured prior water availability as the cumulative precipitation over the preceding 8 weeks and utilized a distributed lag non-linear model stratified by the level of prior water availability to examine the association between dengue infection risk and heavy rainfall in Guangzhou, a dengue transmission hotspot in southern China. Results: Our findings suggest that the effects of heavy rainfall are likely to be modified by prior water availability. A 24-55 day lagged impact of heavy rainfall was associated with an increase in dengue risk when prior water availability was low, with the greatest incidence rate ratio (IRR) of 1.37 [95% credible interval (CI): 1.02-1.83] occurring at a lag of 27 days. In contrast, a heavy rainfall lag of 7-121 days decreased dengue risk when prior water availability was high, with the lowest IRR of 0.59 (95% CI: 0.43-0.79), occurring at a lag of 45 days. Discussion: These findings may help to reconcile the inconsistent conclusions reached by previous studies and improve our understanding of the complex relationship between heavy rainfall and dengue infection risk.


Asunto(s)
Dengue , Animales , Dengue/epidemiología , Agua , Factores de Tiempo , Incidencia , China/epidemiología
3.
Commun Med (Lond) ; 3(1): 181, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097811

RESUMEN

BACKGROUND: Healthcare restrictions during the COVID-19 pandemic, particularly in ophthalmology, led to a differential underutilization of care. An analytic approach is needed to characterize pandemic health services usage across many conditions. METHODS: A common analytical framework identified pandemic care utilization patterns across 261 ophthalmic diagnoses. Using a United States eye care registry, predictions of utilization expected without the pandemic were established for each diagnosis via models trained on pre-pandemic data. Pandemic effects on utilization were estimated by calculating deviations between observed and expected patient volumes from January 2020 to December 2021, with two sub-periods of focus: the hiatus (March-May 2020) and post-hiatus (June 2020-December 2021). Deviation patterns were analyzed using cluster analyses, data visualizations, and hypothesis testing. RESULTS: Records from 44.62 million patients and 2455 practices show lasting reductions in ophthalmic care utilization, including visits for leading causes of visual impairment (age-related macular degeneration, diabetic retinopathy, cataract, glaucoma). Mean deviations among all diagnoses are 67% below expectation during the hiatus peak, and 13% post-hiatus. Less severe conditions experience greater utilization reductions, with heterogeneities across diagnosis categories and pandemic phases. Intense post-hiatus reductions occur among non-vision-threatening conditions or asymptomatic precursors of vision-threatening diseases. Many conditions with above-average post-hiatus utilization pose a risk for irreversible morbidity, such as emergent pediatric, retinal, or uveitic diseases. CONCLUSIONS: We derive high-resolution insights on pandemic care utilization in the US from high-dimensional data using an analytical framework that can be applied to study healthcare disruptions in other settings and inform efforts to pinpoint unmet clinical needs.


The COVID-19 pandemic disrupted healthcare services globally, including eye care in the United States. Using a US eye disease database, we measured how the pandemic impacted patient visits for 261 eye diagnoses by comparing actual visit volumes for each diagnosis with what would have been expected without the pandemic. We identified groups of conditions with similar changes in visit levels and examined whether these shifts were related to characteristics of the diagnoses studied. We found extended decreases in patient presentations for most eye conditions, with greater reductions for less severe diagnoses, and with anomalies and differences in this trend across diagnosis categories and pandemic sub-periods. This highlights areas of potentially unmet need in vision care arising from the pandemic.

4.
Res Sq ; 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37693392

RESUMEN

Background: Given the rapid geographic spread of dengue and the growing frequency and intensity of heavy rainfall events, it is imperative to understand the relationship between these phenomena in order to propose effective interventions. However, studies exploring the association between heavy rainfall and dengue infection risk have reached conflicting conclusions. Methods: In this study, we use a distributed lag non-linear model to examine the association between dengue infection risk and heavy rainfall in Guangzhou, a dengue transmission hotspot in southern China, stratified by prior water availability. Results: Our findings suggest that the effects of heavy rainfall are likely to be modified by prior water availability. A 24-55 day lagged impact of heavy rainfall was associated with an increase in dengue risk when prior water availability was low, with the greatest incidence rate ratio (IRR) of 1.37 (95% credible interval (CI): 1.02-1.83) occurring at a lag of 27 days. In contrast, a heavy rainfall lag of 7-121 days decreased dengue risk when prior water availability was high, with the lowest IRR of 0.59 (95% CI: 0.43-0.79), occurring at a lag of 45 days. Conclusions: These findings may help to reconcile the inconsistent conclusions reached by previous studies and improve our understanding of the complex relationship between heavy rainfall and dengue infection risk.

5.
J Occup Environ Med ; 65(5): e312-e318, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36787539

RESUMEN

OBJECTIVE: The aim of the study is to examine associations between years of firefighting service and eight chronological age-adjusted measures of blood leukocyte epigenetic age acceleration: Horvath, Hannum, SkinBloodClock, Intrinsic, Extrinsic, PhenoAge, GrimAge, and DNAm telomere length. METHODS: The study used a repeated measures analysis of data from 379 incumbent firefighters from eight career departments and 100 recruit firefighters from two of the departments, across the United States. RESULTS: Incumbent firefighters had on average greater epigenetic age acceleration compared with recruit firefighters, potentially due to the cumulative effect of occupational exposures. However, among incumbent firefighters, additional years of service were associated with epigenetic age deceleration, particularly for GrimAge, a strong predictor of mortality. CONCLUSIONS: Long-term studies with more specific occupational exposure classification are needed to better understand the relationship between years of service and aging biomarkers.


Asunto(s)
Bomberos , Humanos , Estados Unidos/epidemiología , Envejecimiento/genética , Estudios Longitudinales , Leucocitos , Epigénesis Genética
6.
Arch Dermatol Res ; 315(4): 1037-1039, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36308559

RESUMEN

Epigenetic (or DNA methylation) age is calculated based on methylation of certain cytosine-guanine (CpG) repeats, and it can accurately estimate one's chronologic age. Importantly, epigenetic age acceleration (EAA) is highly predictive of age-associated morbidity and all-cause mortality. Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease with significant systemic disease burden. Here, we performed a pilot study to calculate EAA from formalin-fixed paraffin-embedded skin samples using Illumina Infinium MethylationEpic BeadChip arrays. Our results demonstrated no significant difference in intrinsic EAA among HS compared to controls (- 1.00 years, p-value = 0.52), significant increases in both extrinsic EAA (13.72 years, p-value < 0.001) and PhenoAge acceleration (7.72 years, p-value = 0.003), and a significant decrease in GrimAge acceleration (- 5.14 years, p-value < 0.001). Our findings suggest that the acceleration of epigenetic age in the HS skin may be associated with extrinsic immune-related changes and can potentially serve as a biomarker of the present and/or future disease burden in HS patients.


Asunto(s)
Hidradenitis Supurativa , Humanos , Hidradenitis Supurativa/genética , Epigénesis Genética , Proyectos Piloto , Metilación de ADN , Piel , Envejecimiento/genética
7.
Biometrics ; 79(2): 1507-1519, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35191022

RESUMEN

Passive surveillance systems are widely used to monitor diseases occurrence over wide spatial areas due to their cost-effectiveness and integration into broadly distributed healthcare systems. However, such systems are generally associated with imperfect ascertainment of disease cases and with heterogeneous capture probabilities arising from factors such as differential access to care. Augmenting passive surveillance systems with other surveillance efforts provides a way to estimate the true number of incident cases. We develop a hierarchical modeling framework for analyzing data from multiple surveillance systems that allows for individual-level covariate-dependent heterogeneous capture probabilities, and borrows information across surveillance sites to improve estimation of the true number of incident cases. Inference is carried out via a two-stage Bayesian procedure. Simulation studies illustrated superior performance of the proposed approach with respect to bias, root mean square error, and coverage compared to a model that does not borrow information across sites. We applied the proposed model to data from three surveillance systems reporting pulmonary tuberculosis (PTB) cases in a major center of ongoing transmission in China. The analysis yielded bias-corrected estimates of PTB cases from the passive system and led to the identification of risk factors associated with PTB rates, as well as factors influencing the operating characteristics of the implemented surveillance systems.


Asunto(s)
Vigilancia en Salud Pública , Humanos , Simulación por Computador , Teorema de Bayes , Análisis de Datos , Tuberculosis Pulmonar/epidemiología , Factores de Riesgo
8.
PLoS Comput Biol ; 18(9): e1010575, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36166479

RESUMEN

With the aid of laboratory typing techniques, infectious disease surveillance networks have the opportunity to obtain powerful information on the emergence, circulation, and evolution of multiple genotypes, serotypes or other subtypes of pathogens, informing understanding of transmission dynamics and strategies for prevention and control. The volume of typing performed on clinical isolates is typically limited by its ability to inform clinical care, cost and logistical constraints, especially in comparison with the capacity to monitor clinical reports of disease occurrence, which remains the most widespread form of public health surveillance. Viewing clinical disease reports as arising from a latent mixture of pathogen subtypes, laboratory typing of a subset of clinical cases can provide inference on the proportion of clinical cases attributable to each subtype (i.e., the mixture components). Optimizing protocols for the selection of isolates for typing by weighting specific subpopulations, locations, time periods, or case characteristics (e.g., disease severity), may improve inference of the frequency and distribution of pathogen subtypes within and between populations. Here, we apply the Disease Surveillance Informatics Optimization and Simulation (DIOS) framework to simulate and optimize hand foot and mouth disease (HFMD) surveillance in a high-burden region of western China. We identify laboratory surveillance designs that significantly outperform the existing network: the optimal network reduced mean absolute error in estimated serotype-specific incidence rates by 14.1%; similarly, the optimal network for monitoring severe cases reduced mean absolute error in serotype-specific incidence rates by 13.3%. In both cases, the optimal network designs achieved improved inference without increasing subtyping effort. We demonstrate how the DIOS framework can be used to optimize surveillance networks by augmenting clinical diagnostic data with limited laboratory typing resources, while adapting to specific, local surveillance objectives and constraints.


Asunto(s)
Enfermedad de Boca, Mano y Pie , China/epidemiología , Genotipo , Humanos , Incidencia , Lactante , Serogrupo
9.
Epigenetics ; 17(13): 2006-2021, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35912433

RESUMEN

Gestational age (GA) is an important determinant of child health and disease risk. Two epigenetic GA clocks have been developed using DNA methylation (DNAm) patterns in cord blood. We investigate the accuracy of GA clocks and determinants of epigenetic GA acceleration (GAA), a biomarker of biological ageing. We hypothesize that prenatal and birth characteristics are associated with altered GAA, thereby disrupting foetal biological ageing. We examined 372 mother-child pairs from the Center for the Health Assessment of Mothers and Children of Salinas study of primarily Latino farmworkers in California. Chronological GA was robustly correlated with epigenetic GA (DNAm GA) estimated by the Knight (r = 0.48, p < 2.2x10-16) and Bohlin clocks (r = 0.67, p < 2.2x10-16) using the Illumina 450K array in cord blood samples collected at birth. GA clock performance was robust, though slightly lower, using DNAm profiles from the Illumina EPIC array in a smaller subsample (Knight: r = 0.39, p < 3.5x10-5; Bohlin: r = 0.60, p < 7.7x10-12). After adjusting for confounders, high maternal serum triglyceride levels (Bohlin: ß = -0.01 days per mg/dL, p = 0.03), high maternal serum lipid levels (Bohlin: ß = -4.31x10-3 days per mg/dL, p = 0.04), preterm delivery (Bohlin: ß = -4.03 days, p = 9.64x10-4), greater maternal parity (Knight: ß = -4.07 days, p = 0.01; Bohlin: ß = -2.43 days, p = 0.01), and male infant sex (Knight: ß = -3.15 days, p = 3.10x10-3) were associated with decreased GAA.Prenatal and birth characteristics affect GAA in newborns. Understanding factors that accelerate or delay biological ageing at birth may identify early-life targets for disease prevention and improve ageing across the life-course. Future research should test the impact of altered GAA on the long-term burden of age-related diseases.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Embarazo , Lactante , Femenino , Humanos , Recién Nacido , Masculino , Edad Gestacional , Epigenómica , Vitaminas , Aceleración
10.
Environ Int ; 166: 107371, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35809487

RESUMEN

Unless a toxicant builds up in a deep compartment, intake by the human body must on average balance the amount that is lost. We apply this idea to assess arsenic (As) exposure misclassification in three previously studied populations in rural Bangladesh (n = 11,224), Navajo Nation in the Southwestern United States (n = 619), and northern Chile (n = 630), under varying assumptions about As sources. Relationships between As intake and excretion were simulated by taking into account additional sources, as well as variability in urine dilution inferred from urinary creatinine. The simulations bring As intake closer to As excretion but also indicate that some exposure misclassification remains. In rural Bangladesh, accounting for intake from more than one well and rice improved the alignment of intake and excretion, especially at low exposure. In Navajo Nation, comparing intake and excretion revealed home dust as an important source. Finally, in northern Chile, while food-frequency questionnaires and urinary As speciation indicate fish and shellfish sources, persistent imbalance of intake and excretion suggests imprecise measures of drinking water arsenic as a major cause of exposure misclassification. The mass-balance approach could prove to be useful for evaluating sources of exposure to toxicants in other settings.


Asunto(s)
Arsénico , Agua Potable , Humanos , Arsénico/análisis , Exposición a Riesgos Ambientales/análisis , Agua Potable/análisis , Alimentos Marinos/análisis , Población Rural
12.
J R Soc Interface ; 18(177): 20200970, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33849340

RESUMEN

School closures may reduce the size of social networks among children, potentially limiting infectious disease transmission. To estimate the impact of K-12 closures and reopening policies on children's social interactions and COVID-19 incidence in California's Bay Area, we collected data on children's social contacts and assessed implications for transmission using an individual-based model. Elementary and Hispanic children had more contacts during closures than high school and non-Hispanic children, respectively. We estimated that spring 2020 closures of elementary schools averted 2167 cases in the Bay Area (95% CI: -985, 5572), fewer than middle (5884; 95% CI: 1478, 11.550), high school (8650; 95% CI: 3054, 15 940) and workplace (15 813; 95% CI: 9963, 22 617) closures. Under assumptions of moderate community transmission, we estimated that reopening for a four-month semester without any precautions will increase symptomatic illness among high school teachers (an additional 40.7% expected to experience symptomatic infection, 95% CI: 1.9, 61.1), middle school teachers (37.2%, 95% CI: 4.6, 58.1) and elementary school teachers (4.1%, 95% CI: -1.7, 12.0). However, we found that reopening policies for elementary schools that combine universal masking with classroom cohorts could result in few within-school transmissions, while high schools may require masking plus a staggered hybrid schedule. Stronger community interventions (e.g. remote work, social distancing) decreased the risk of within-school transmission across all measures studied, with the influence of community transmission minimized as the effectiveness of the within-school measures increased.


Asunto(s)
COVID-19 , Niño , Humanos , Distanciamiento Físico , Políticas , SARS-CoV-2 , Instituciones Académicas
13.
PLoS Comput Biol ; 16(12): e1008477, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33275606

RESUMEN

Infectious disease surveillance systems provide vital data for guiding disease prevention and control policies, yet the formalization of methods to optimize surveillance networks has largely been overlooked. Decisions surrounding surveillance design parameters-such as the number and placement of surveillance sites, target populations, and case definitions-are often determined by expert opinion or deference to operational considerations, without formal analysis of the influence of design parameters on surveillance objectives. Here we propose a simulation framework to guide evidence-based surveillance network design to better achieve specific surveillance goals with limited resources. We define evidence-based surveillance design as an optimization problem, acknowledging the many operational constraints under which surveillance systems operate, the many dimensions of surveillance system design, the multiple and competing goals of surveillance, and the complex and dynamic nature of disease systems. We describe an analytical framework-the Disease Surveillance Informatics Optimization and Simulation (DIOS) framework-for the identification of optimal surveillance designs through mathematical representations of disease and surveillance processes, definition of objective functions, and numerical optimization. We then apply the framework to the problem of selecting candidate sites to expand an existing surveillance network under alternative objectives of: (1) improving spatial prediction of disease prevalence at unmonitored sites; or (2) estimating the observed effect of a risk factor on disease. Results of this demonstration illustrate how optimal designs are sensitive to both surveillance goals and the underlying spatial pattern of the target disease. The findings affirm the value of designing surveillance systems through quantitative and adaptive analysis of network characteristics and performance. The framework can be applied to the design of surveillance systems tailored to setting-specific disease transmission dynamics and surveillance needs, and can yield improved understanding of tradeoffs between network architectures.


Asunto(s)
Enfermedades Transmisibles/epidemiología , Simulación por Computador , Interpretación Estadística de Datos , Vigilancia de la Población/métodos , Humanos
14.
Spat Spatiotemporal Epidemiol ; 35: 100341, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33138957

RESUMEN

Disease surveillance data are important for monitoring disease burden and occurrence, and for informing a wide range of efforts to improve population health. Surveillance for infectious diseases may be conducted passively, relying on reports from healthcare facilities, or actively, involving surveys of the population at risk. Passive surveillance typically provides wide spatial coverage, but is subject to biases arising from differences in care-seeking behavior, diagnostic practices, and under-reporting. Active surveillance minimizes these biases, but is typically constrained to small areas and subpopulations due to resource limitations. Methods based on linkage of individual records between passive and active surveillance datasets provide a means to estimate and correct for the biases of each system, leveraging the size and coverage of passive surveillance and the quality of data in active surveillance. We develop a spatial Bayesian hierarchical model for bias-correcting data from both systems to yield an improved estimate of disease measures after adjusting for under-ascertainment. We apply the framework to data from a passive and an active surveillance system for pulmonary tuberculosis (PTB) in Sichuan, China, and estimate the average sensitivity of the active surveillance system at 70% (95% credible interval: 62%, 78%), and the passive system at 30% (95% CI: 24%, 35%). Passive surveillance sensitivity exhibited considerable spatial variability, and was positively associated with a site's gross domestic product per capita. Bias-corrected estimates of county-level PTB prevalence in the province in 2010 identified regions in the southeast with the highest PTB burden, yielding different geographic priorities than previous reports.


Asunto(s)
Sesgo , Vigilancia de la Población , Análisis Espacio-Temporal , Tuberculosis Pulmonar/epidemiología , China/epidemiología , Humanos , Prevalencia
15.
Proc Natl Acad Sci U S A ; 117(44): 27549-27555, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33077583

RESUMEN

Global food security is a major driver of population health, and food system collapse may have complex and long-lasting effects on health outcomes. We examined the effect of prenatal exposure to the Great Chinese Famine (1958-1962)-the largest famine in human history-on pulmonary tuberculosis (PTB) across consecutive generations in a major center of ongoing transmission in China. We analyzed >1 million PTB cases diagnosed between 2005 and 2018 in Sichuan Province using age-period-cohort analysis and mixed-effects metaregression to estimate the effect of the famine on PTB risk in the directly affected birth cohort (F1) and their likely offspring (F2). The analysis was repeated on certain sexually transmitted and blood-borne infections (STBBI) to explore potential mechanisms of the intergenerational effects. A substantial burden of active PTB in the exposed F1 cohort and their offspring was attributable to the Great Chinese Famine, with more than 12,000 famine-attributable active PTB cases (>1.23% of all cases reported between 2005 and 2018). An interquartile range increase in famine intensity resulted in a 6.53% (95% confidence interval [CI]: 1.19-12.14%) increase in the ratio of observed to expected incidence rate (incidence rate ratio, IRR) in the absence of famine in F1, and an 8.32% (95% CI: 0.59-16.6%) increase in F2 IRR. Increased risk of STBBI was also observed in F2. Prenatal and early-life exposure to malnutrition may increase the risk of active PTB in the exposed generation and their offspring, with the intergenerational effect potentially due to both within-household transmission and increases in host susceptibility.


Asunto(s)
Hambruna , Efectos Tardíos de la Exposición Prenatal/epidemiología , Inanición/complicaciones , Tuberculosis Pulmonar/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , China/epidemiología , Estudios de Cohortes , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/inmunología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/prevención & control , Factores de Riesgo , Inanición/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/prevención & control , Adulto Joven
16.
medRxiv ; 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32793934

RESUMEN

Background Large-scale school closures have been implemented worldwide to curb the spread of COVID-19. However, the impact of school closures and re-opening on epidemic dynamics remains unclear. Methods We simulated COVID-19 transmission dynamics using an individual-based stochastic model, incorporating social-contact data of school-aged children during shelter-in-place orders derived from Bay Area (California) household surveys. We simulated transmission under observed conditions and counterfactual intervention scenarios between March 17-June 1, and evaluated various fall 2020 K-12 reopening strategies. Findings Between March 17-June 1, assuming children <10 were half as susceptible to infection as older children and adults, we estimated school closures averted a similar number of infections (13,842 cases; 95% CI: 6,290, 23,040) as workplace closures (15,813; 95% CI: 9,963, 22,617) and social distancing measures (7,030; 95% CI: 3,118, 11,676). School closure effects were driven by high school and middle school closures. Under assumptions of moderate community transmission, we estimate that fall 2020 school reopenings will increase symptomatic illness among high school teachers (an additional 40.7% expected to experience symptomatic infection, 95% CI: 1.9, 61.1), middle school teachers (37.2%, 95% CI: 4.6, 58.1), and elementary school teachers (4.1%, 95% CI: -1.7, 12.0). Results are highly dependent on uncertain parameters, notably the relative susceptibility and infectiousness of children, and extent of community transmission amid re-opening. The school-based interventions needed to reduce the risk to fewer than an additional 1% of teachers infected varies by grade level. A hybrid-learning approach with halved class sizes of 10 students may be needed in high schools, while maintaining small cohorts of 20 students may be needed for elementary schools. Interpretation Multiple in-school intervention strategies and community transmission reductions, beyond the extent achieved to date, will be necessary to avoid undue excess risk associated with school reopening. Policymakers must urgently enact policies that curb community transmission and implement within-school control measures to simultaneously address the tandem health crises posed by COVID-19 and adverse child health and development consequences of long-term school closures.

17.
Proc Biol Sci ; 287(1932): 20201065, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32752986

RESUMEN

Temperature is widely known to influence the spatio-temporal dynamics of vector-borne disease transmission, particularly as temperatures vary across critical thermal thresholds. When temperature conditions exhibit such 'transcritical variation', abrupt spatial or temporal discontinuities may result, generating sharp geographical or seasonal boundaries in transmission. Here, we develop a spatio-temporal machine learning algorithm to examine the implications of transcritical variation for West Nile virus (WNV) transmission in the Los Angeles metropolitan area (LA). Analysing a large vector and WNV surveillance dataset spanning 2006-2016, we found that mean temperatures in the previous month strongly predicted the probability of WNV presence in pools of Culex quinquefasciatus mosquitoes, forming distinctive inhibitory (10.0-21.0°C) and favourable (22.7-30.2°C) mean temperature ranges that bound a narrow 1.7°C transitional zone (21-22.7°C). Temperatures during the most intense months of WNV transmission (August/September) were more strongly associated with infection probability in Cx. quinquefasciatus pools in coastal LA, where temperature variation more frequently traversed the narrow transitional temperature range compared to warmer inland locations. This contributed to a pronounced expansion in the geographical distribution of human cases near the coast during warmer-than-average periods. Our findings suggest that transcritical variation may influence the sensitivity of transmission to climate warming, and that especially vulnerable locations may occur where present climatic fluctuations traverse critical temperature thresholds.


Asunto(s)
Temperatura , Fiebre del Nilo Occidental/transmisión , Virus del Nilo Occidental , Animales , California , Culex , Culicidae , Geografía , Humanos , Los Angeles/epidemiología , Mosquitos Vectores , Fiebre del Nilo Occidental/epidemiología
18.
Clin Infect Dis ; 71(12): 3088-3095, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31879754

RESUMEN

BACKGROUND: Enterovirus 71 (EV71) is a major causative agent of hand, foot, and mouth disease (HFMD), associated with severe manifestations of the disease. Pediatric immunization with inactivated EV71 vaccine was initiated in 2016 in the Asia-Pacific region, including China. We analyzed a time series of HFMD cases attributable to EV71, coxsackievirus A16 (CA16), and other enteroviruses in Chengdu, a major transmission center in China, to assess early impacts of immunization. METHODS: Reported HFMD cases were obtained from China's notifiable disease surveillance system. We compared observed postvaccination incidence rates during 2017-2018 with counterfactual predictions made from a negative binomial regression and a random forest model fitted to prevaccine years (2011-2015). We fit a change point model to the full time series to evaluate whether the trend of EV71 HFMD changed following vaccination. RESULTS: Between 2011 and 2018, 279 352 HFMD cases were reported in the study region. The average incidence rate of EV71 HFMD in 2017-2018 was 60% (95% prediction interval [PI], 41%-72%) lower than predicted in the absence of immunization, corresponding to an estimated 6911 (95% PI, 3246-11 542) EV71 cases averted over 2 years. There were 52% (95% PI, 42%-60%) fewer severe HFMD cases than predicted. However, the incidence rate of non-CA16 and non-EV71 HFMD was elevated in 2018. We identified a significant decline in the trend of EV71 HFMD 4 months into the postvaccine period. CONCLUSIONS: We provide the first real-world evidence that programmatic vaccination against EV71 is effective against childhood HFMD and present an approach to detect early vaccine impact or intended consequences from surveillance data.


Asunto(s)
Enterovirus Humano A , Enterovirus , Enfermedad de Boca, Mano y Pie , Asia , Niño , China/epidemiología , Enfermedad de Boca, Mano y Pie/epidemiología , Enfermedad de Boca, Mano y Pie/prevención & control , Humanos , Lactante , Vacunas de Productos Inactivados
19.
PLoS Negl Trop Dis ; 13(12): e0007968, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31877134

RESUMEN

Climate exerts complex influences on leptospirosis transmission, affecting human behavior, zoonotic host population dynamics, and survival of the pathogen in the environment. Here, we describe the spatiotemporal distribution of leptospirosis incidence reported to China's National Infectious Disease Surveillance System from 2004-2014 in an endemic region in western China, and employ distributed lag models at annual and sub-annual scales to analyze its association with hydroclimatic risk factors and explore evidence for the potential role of a soil reservoir in the transmission of Leptospira spp. More than 97% of the 2,934 reported leptospirosis cases occurred during the harvest season between August and October, and most commonly affected farmers (83%). Using a distributed lag Poisson regression framework, we characterized incidence rate ratios (IRRs) associated with interquartile range increases in precipitation of 3.45 (95% confidence interval 2.57-4.64) over 0-1-year lags, and 1.90 (1.18-3.06) over 0-15-week lags. Adjusting for soil moisture decreased IRRs for precipitation at both timescales (yearly adjusted IRR: 1.05, 0.74-1.49; weekly adjusted IRR: 1.36, 0.72-2.57), suggesting precipitation effects may be mediated through soil moisture. Increased soil moisture was positively associated with leptospirosis at both timescales, suggesting that the survival of pathogenic Leptospira spp. in moist soils may be a critical control on harvest-associated leptospirosis transmission in the study region. These results support the hypothesis that soils may serve as an environmental reservoir and may play a significant yet underrecognized role in leptospirosis transmission.


Asunto(s)
Reservorios de Enfermedades , Transmisión de Enfermedad Infecciosa , Leptospirosis/epidemiología , Leptospirosis/transmisión , Microbiología del Suelo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , China/epidemiología , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Población Rural , Estaciones del Año , Adulto Joven
20.
BMC Infect Dis ; 19(1): 615, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31299911

RESUMEN

BACKGROUND: China contributed 8.9% of all incident cases of tuberculosis globally in 2017, and understanding the spatiotemporal distribution of pulmonary tuberculosis (PTB) in major transmission foci in the country is critical to ongoing efforts to improve population health. METHODS: We estimated annual PTB notification rates and their spatiotemporal distributions in Sichuan province, a major center of ongoing transmission, from 2005 to 2017. Time series decomposition was used to obtain trend components from the monthly incidence rate time series. Spatiotemporal cluster analyses were conducted to detect spatiotemporal clusters of PTB at the county level. RESULTS: From 2005 to 2017, 976,873 cases of active PTB and 388,739 cases of smear-positive PTB were reported in Sichuan Province, China. During this period, the overall reported incidence rate of active PTB decreased steadily at a rate of decrease (3.77 cases per 100,000 per year, 95% confidence interval (CI): 3.28-4.31) that was slightly faster than the national average rate of decrease (3.14 cases per 100,000 per year, 95% CI: 2.61-3.67). Although reported PTB incidence decreased significantly in most regions of the province, incidence was observed to be increasing in some counties with high HIV incidence and ethnic minority populations. Active and smear-positive PTB case reports exhibited seasonality, peaking in March and April, with apparent links to social dynamics and climatological factors. CONCLUSIONS: While PTB incidence rates decreased strikingly in the study area over the past decade, improvements have not been equally distributed. Additional surveillance and control efforts should be guided by the seasonal-trend and spatiotemporal cluster analyses presented here, focusing on areas with increasing incidence rates, and updated to reflect the latest information from real-time reporting.


Asunto(s)
Tuberculosis Pulmonar/diagnóstico , Adolescente , Adulto , Anciano , Niño , Preescolar , China/epidemiología , Análisis por Conglomerados , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Estaciones del Año , Análisis Espacio-Temporal , Tuberculosis Pulmonar/epidemiología , Tuberculosis Pulmonar/transmisión , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...