Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Circulation ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742491

RESUMEN

BACKGROUND: Diffuse coronary artery disease (CAD) impacts the safety and efficacy of percutaneous coronary intervention (PCI). Pathophysiological CAD patterns can be quantified using fractional flow reserve (FFR) pullbacks incorporating the pullback pressure gradient (PPG) calculation. This study aimed to establish the capacity of PPG to predict optimal revascularisation and procedural outcomes. METHODS: This prospective, investigator-initiated, single-arm, multicentre study enrolled patients with at least one epicardial lesion with an FFR ≤ 0.80 scheduled for PCI. Manual FFR pullbacks were employed to calculate PPG. The primary outcome of optimal revascularisation was defined as a post-PCI FFR ≥ 0.88. RESULTS: 993 patients with 1044 vessels were included. The mean FFR was 0.68 ± 0.12, PPG 0.62 ± 0.17, and post-PCI FFR 0.87 ± 0.07. PPG was significantly correlated with the change in FFR after PCI (r=0.65, 95% CI 0.61-0.69, p<0.001) and demonstrated excellent predicted capacity for optimal revascularisation (AUC 0.82, 95% CI 0.79-0.84, p<0.001). Conversely, FFR alone did not predict revascularisation outcomes (AUC 0.54, 95% CI 0.50-0.57). PPG influenced treatment decisions in 14% of patients, redirecting them from PCI to alternative treatment modalities. Periprocedural myocardial infarction occurred more frequently in patients with low PPG (<0.62) compared to those with focal disease (OR 1.71, 95% CI: 1.00-2.97). CONCLUSIONS: Pathophysiological CAD patterns distinctly affect the safety and effectiveness of PCI. The PPG showed an excellent predictive capacity for optimal revascularisation and demonstrated added value compared to a FFR measurement.

3.
J Med Imaging (Bellingham) ; 11(3): 034001, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38756439

RESUMEN

Purpose: Automatic comprehensive reporting of coronary artery disease (CAD) requires anatomical localization of the coronary artery pathologies. To address this, we propose a fully automatic method for extraction and anatomical labeling of the coronary artery tree using deep learning. Approach: We include coronary CT angiography (CCTA) scans of 104 patients from two hospitals. Reference annotations of coronary artery tree centerlines and labels of coronary artery segments were assigned to 10 segment classes following the American Heart Association guidelines. Our automatic method first extracts the coronary artery tree from CCTA, automatically placing a large number of seed points and simultaneous tracking of vessel-like structures from these points. Thereafter, the extracted tree is refined to retain coronary arteries only, which are subsequently labeled with a multi-resolution ensemble of graph convolutional neural networks that combine geometrical and image intensity information from adjacent segments. Results: The method is evaluated on its ability to extract the coronary tree and to label its segments, by comparing the automatically derived and the reference labels. A separate assessment of tree extraction yielded an F1 score of 0.85. Evaluation of our combined method leads to an average F1 score of 0.74. Conclusions: The results demonstrate that our method enables fully automatic extraction and anatomical labeling of coronary artery trees from CCTA scans. Therefore, it has the potential to facilitate detailed automatic reporting of CAD.

4.
J Am Coll Cardiol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38754704

RESUMEN

BACKGROUND: The optimal index of microvascular function should be specific for the microvascular compartment. Yet, coronary flow reserve (CFR), despite being widely used to diagnose coronary microvascular dysfunction (CMD), is influenced by both epicardial and microvascular resistance. Conversely, microvascular resistance reserve (MRR) adjusts for fractional flow reserve (FFR), and thus is theoretically independent of epicardial resistance. OBJECTIVES: We tested the hypothesis that MRR, unlike CFR, is not influenced by increasing epicardial resistance, and thus is a more specific index of microvascular function. METHODS: In a cohort of 16 patients that had undergone proximal left anterior descending artery stenting, we created four grades of artificial stenosis (no stenosis, mild, moderate, and severe) using a coronary angioplasty balloon inflated to different degrees within the stent. For each stenosis grade, we calculated CFR and MRR using continuous thermodilution (64 measurements of each) in order to assess their response to changing epicardial resistance. RESULTS: Graded balloon inflation resulted in a significant sequential decrease in mean FFR (no stenosis: 0.82 ±0.05; mild: 0.72 ±0.04; moderate: 0.61 ±0.05; severe: 0.48 ±0.09, p<0.001). This translated into a linear decrease in mean hyperaemic coronary flow (no stenosis: 170.5 ±66.8 ml/min; mild: 149.8 ±58.8 ml/min; moderate: 124.4 ±53.0 ml/min; severe: 94.0 ±45.2 ml/min, p<0.001). CFR exhibited a marked linear decrease with increasing stenosis (no stenosis: 2.5 ±0.9; mild: 2.2 ±0.8; moderate: 1.8 ±0.7; severe: 1.4 ±0.6), corresponding to a decrease of 0.3 for a decrease in FFR of 0.1 (p<0.001). In contrast, MRR exhibited a negligible decrease across all stenosis grades (no stenosis: 3.0 ±1.0; mild: 3.0 ±1.0; moderate: 2.9 ±1.0; severe: 2.8 ±1.0), corresponding to a decrease of just 0.05 for a decrease in FFR of 0.1 (p<0.001). CONCLUSION: MRR, unlike CFR, is minimally influenced by epicardial resistance, and thus should be considered the more specific index of microvascular function. This suggests that MRR can also reliably evaluate microvascular function in patients with significant epicardial disease.

5.
EuroIntervention ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38752714

RESUMEN

The 2023 European Bifurcation Club (EBC) meeting took place in Warsaw in October, and the latest evidence for the use of intravascular ultrasound (IVUS) and optical coherence tomography (OCT) to optimise percutaneous coronary interventions (PCI) on coronary bifurcation lesions (CBLs) was a major focus. The topic generated deep discussions and general appraisal on the potential benefits of IVUS and OCT in PCI procedures. Nevertheless, despite an increasing recognition of IVUS and OCT capabilities and their recognised central role for guidance in complex CBL and left main PCI, it is expected that angiography will continue to be the primary guidance modality for CBL PCI, principally due to educational and economic barriers. Mindful of the restricted access/adoption of intracoronary imaging for CBL PCI, the EBC board decided to review and describe a series of tips and tricks which can help to optimise angiography-guided PCI for CBLs. The identified key points for achieving an optimal angiography-guided PCI include a thorough analysis of pre-PCI images (computed tomography angiography, multiple angiographic views, quantitative coronary angiography vessel estimation), a systematic application of the technical steps suggested for a given selected technique, an intraprocedural or post-PCI use of stent enhancement and a low threshold for bailout use of intravascular imaging.

6.
Catheter Cardiovasc Interv ; 103(6): 885-896, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38566527

RESUMEN

BACKGROUND: Two invasive methods are available to estimate microvascular resistance: bolus and continuous thermodilution. Comparative studies have revealed a lack of concordance between measurements of microvascular resistance obtained through these techniques. AIMS: This study aimed to examine the influence of vessel volume on bolus thermodilution measurements. METHODS: We prospectively included patients with angina with non-obstructive coronary arteries (ANOCA) undergoing bolus and continuous thermodilution assessments. All patients underwent coronary CT angiography to extract vessel volume. Coronary microvascular dysfunction was defined as coronary flow reserve (CFR) < 2.0. Measurements of absolute microvascular resistance (in Woods units) and index of microvascular resistance (IMR) were compared before and after volumetric adjustment. RESULTS: Overall, 94 patients with ANOCA were included in this study. The mean age was 64.7 ± 10.8 years, 48% were female, and 19% had diabetes. The prevalence of CMD was 16% based on bolus thermodilution, while continuous thermodilution yielded a prevalence of 27% (Cohen's Kappa 0.44, 95% CI 0.23-0.65). There was no correlation in microvascular resistance between techniques (r = 0.17, 95% CI -0.04 to 0.36, p = 0.104). The adjustment of IMR by vessel volume significantly increased the agreement with absolute microvascular resistance derived from continuous thermodilution (r = 0.48, 95% CI 0.31-0.63, p < 0.001). CONCLUSIONS: In patients with ANOCA, invasive methods based on coronary thermodilution yielded conflicting results for the assessment of CMD. Adjusting IMR with vessel volume improved the agreement with continuous thermodilution for the assessment of microvascular resistance. These findings strongly suggest the importance of considering vessel volume when interpreting bolus thermodilution assessment.


Asunto(s)
Angiografía por Tomografía Computarizada , Angiografía Coronaria , Enfermedad de la Arteria Coronaria , Circulación Coronaria , Vasos Coronarios , Microcirculación , Valor Predictivo de las Pruebas , Termodilución , Resistencia Vascular , Humanos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Vasos Coronarios/fisiopatología , Vasos Coronarios/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/fisiopatología , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Reproducibilidad de los Resultados
7.
JACC Asia ; 4(3): 229-240, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38463680

RESUMEN

Background: Both left ventricular systolic function and fractional flow reserve (FFR) are prognostic factors after percutaneous coronary intervention (PCI). However, how these prognostic factors are inter-related in risk stratification of patients after PCI remains unclarified. Objectives: This study evaluated differential prognostic implication of post-PCI FFR according to left ventricular ejection fraction (LVEF). Methods: A total of 2,965 patients with available LVEF were selected from the POST-PCI FLOW (Prognostic Implications of Physiologic Investigation After Revascularization with Stent) international registry of patients with post-PCI FFR measurement. The primary outcome was a composite of cardiac death or target-vessel myocardial infarction (TVMI) at 2 years. The secondary outcome was target-vessel revascularization (TVR) and target vessel failure, which was a composite of cardiac death, TVMI, or TVR. Results: Post-PCI FFR was independently associated with the risk of target vessel failure (per 0.01 decrease: HRadj: 1.029; 95% CI: 1.009-1.049; P = 0.005). Post-PCI FFR was associated with increased risk of cardiac death or TVMI (HRadj: 1.145; 95% CI: 1.025-1.280; P = 0.017) among patients with LVEF ≤40%, and with that of TVR in patients with LVEF >40% (HRadj: 1.028; 95% CI: 1.005-1.052; P = 0.020). Post-PCI FFR ≤0.80 was associated with increased risk of cardiac death or TVMI in the LVEF ≤40% group and with that of TVR in LVEF >40% group. Prognostic impact of post-PCI FFR for the primary outcome was significantly different according to LVEF (Pinteraction = 0.019). Conclusions: Post-PCI FFR had differential prognostic impact according to LVEF. Residual ischemia by post-PCI FFR ≤0.80 was a prognostic indicator for cardiac death or TVMI among patients with patients with LVEF ≤40%, and it was associated with TVR among patients with patients with LVEF>40%. (Prognostic Implications of Physiologic Investigation After Revascularization with Stent [POST-PCI FLOW]; NCT04684043).

8.
Artículo en Inglés | MEDLINE | ID: mdl-38427153

RESUMEN

This study focuses on identifying anatomical markers with predictive capacity for long-term myocardial infarction (MI) in focal coronary artery disease (CAD). Eighty future culprit lesions (FCL) and 108 non-culprit lesions (NCL) from 80 patients underwent 3D quantitative coronary angiography. The minimum lumen area (MLA), minimum lumen ratio (MLR), and vessel fractional flow reserve (vFFR) were evaluated. MLR was defined as the ratio between MLA and the cross-sectional area at the proximal lesion edge, with lower values indicating more abrupt luminal narrowing. Significant differences were observed between FCL and NCL in MLR (0.41 vs. 0.53, p < 0.001). MLR correlated inversely with translesional vFFR (r = - 0.26, p = 0.0004) and was the strongest predictor of MI at 5 years (AUC = 0.75). Lesions with MLR < 0.40 had a fourfold increased MI incidence at 5 years. MLR is a robust predictor of future adverse coronary events.

9.
J Am Coll Cardiol ; 83(6): 699-709, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38325996

RESUMEN

Diagnosing coronary microvascular dysfunction remains challenging, primarily due to the lack of direct measurements of absolute coronary blood flow (Q) and microvascular resistance (Rµ). However, there has been recent progress with the development and validation of continuous intracoronary thermodilution, which offers a simplified and validated approach for clinical use. This technique enables direct quantification of Q and Rµ, leading to precise and accurate evaluation of the coronary microcirculation. To ensure consistent and reliable results, it is crucial to follow a standardized protocol when performing continuous intracoronary thermodilution measurements. This document aims to summarize the principles of thermodilution-derived absolute coronary flow measurements and propose a standardized method for conducting these assessments. The proposed standardization serves as a guide to ensure the best practice of the method, enhancing the clinical assessment of the coronary microcirculation.


Asunto(s)
Circulación Coronaria , Isquemia Miocárdica , Humanos , Circulación Coronaria/fisiología , Resistencia Vascular/fisiología , Termodilución/métodos , Hemodinámica , Microcirculación/fisiología , Vasos Coronarios
10.
J Am Heart Assoc ; 13(5): e032605, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38390822

RESUMEN

BACKGROUND: Following percutaneous coronary intervention (PCI), optical coherence tomography provides prognosis information. The pullback pressure gradient is a novel index that discriminates focal from diffuse coronary artery disease based on fractional flow reserve pullbacks. We sought to investigate the association between coronary artery disease patterns, defined by coronary physiology, and optical coherence tomography after stent implantation in stable patients undergoing PCI. METHODS AND RESULTS: This multicenter, prospective, single-arm study was conducted in 5 countries (NCT03782688). Subjects underwent motorized fractional flow reserve pullbacks evaluation followed by optical coherence tomography-guided PCI. Post-PCI optical coherence tomography minimum stent area, stent expansion, and the presence of suboptimal findings such as incomplete stent apposition, stent edge dissection, and irregular tissue protrusion were compared between patients with focal versus diffuse disease. Overall, 102 patients (105 vessels) were included. Fractional flow reserve before PCI was 0.65±0.14, pullback pressure gradient was 0.66±0.14, and post-PCI fractional flow reserve was 0.88±0.06. The mean minimum stent area was 5.69±1.99 mm2 and was significantly larger in vessels with focal disease (6.18±2.12 mm2 versus 5.19±1.72 mm2, P=0.01). After PCI, incomplete stent apposition, stent edge dissection, and irregular tissue protrusion were observed in 27.6%, 10.5%, and 51.4% of the cases, respectively. Vessels with focal disease at baseline had a lower prevalence of incomplete stent apposition (11.3% versus 44.2%, P=0.002) and more irregular tissue protrusion (69.8% versus 32.7%, P<0.001). CONCLUSIONS: Baseline coronary pathophysiological patterns are associated with suboptimal imaging findings after PCI. Patients with focal disease had larger minimum stent area and a higher incidence of tissue protrusion, whereas stent malapposition was more frequent in patients with diffuse disease.


Asunto(s)
Enfermedad de la Arteria Coronaria , Reserva del Flujo Fraccional Miocárdico , Intervención Coronaria Percutánea , Humanos , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/cirugía , Vasos Coronarios/diagnóstico por imagen , Reserva del Flujo Fraccional Miocárdico/fisiología , Intervención Coronaria Percutánea/efectos adversos , Intervención Coronaria Percutánea/métodos , Valor Predictivo de las Pruebas , Estudios Prospectivos , Tomografía de Coherencia Óptica/métodos , Resultado del Tratamiento
11.
J Cardiovasc Comput Tomogr ; 18(2): 154-161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38238196

RESUMEN

BACKGROUND: To identify anatomical and morphological plaque features predictors of PCI and create a multiparametric score to increase the predictive yield. Moreover, we assessed the incremental predictive value of FFRCT (Fractional Flow Reserve derived from CCTA) trans-lesion gradient (ΔFFRCT) when integrated into the score. METHODS: Observational cohort study including patients undergoing CCTA for suspected coronary artery disease, with FFRCT available, referred to invasive coronary angiogram and assessment of fractional flow reserve. Plaque analysis was performed using validated semi-automated software. Logistic regression was performed to identify anatomical and morphological plaque features predictive of PCI. Optimal thresholds were defined by area under the receiver-operating characteristics curve (AUC) analysis. A scoring system was developed in a derivation cohort (70 â€‹% of the study population) and tested in a validation cohort (30 â€‹% of patients). RESULTS: The overall study population included 340 patients (455 vessels), among which 238 patients (320 vessels) were included in the derivation cohort. At multivariate logistic regression analysis, absence of left main disease, diameter stenosis (DS), non-calcified plaque (NCP) volume, and percent atheroma volume (PAV) were independent predictors of PCI. Optimal thresholds were: DS â€‹≥ â€‹50 â€‹%, volume of NCP>113 â€‹mm3 and PAV>17 â€‹%. A weighted score (CT-PCI Score) ranging from 0 to 11 was obtained. The AUC of the score was 0.80 (95%CI 0.74-0.86). The integration of ΔFFRCT in the CT-PCI score led to a mild albeit not significant increase in the AUC (0.82, 95%CI 0.77-0.87, p â€‹= â€‹0.328). CONCLUSIONS: Plaque anatomy and morphology derived from CCTA could aid in identifying patients amenable to PCI.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Intervención Coronaria Percutánea , Placa Aterosclerótica , Humanos , Angiografía por Tomografía Computarizada , Constricción Patológica/patología , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/terapia , Enfermedad de la Arteria Coronaria/patología , Estenosis Coronaria/diagnóstico por imagen , Estenosis Coronaria/terapia , Estenosis Coronaria/patología , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología , Placa Aterosclerótica/patología , Valor Predictivo de las Pruebas , Síndrome
12.
Ann Biomed Eng ; 52(2): 226-238, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37733110

RESUMEN

The present study establishes a link between blood flow energy transformations in coronary atherosclerotic lesions and clinical outcomes. The predictive capacity for future myocardial infarction (MI) was compared with that of established quantitative coronary angiography (QCA)-derived predictors. Angiography-based computational fluid dynamics (CFD) simulations were performed on 80 human coronary lesions culprit of MI within 5 years and 108 non-culprit lesions for future MI. Blood flow energy transformations were assessed in the converging flow segment of the lesion as ratios of kinetic and rotational energy values (KER and RER, respectively) at the QCA-identified minimum lumen area and proximal lesion sections. The anatomical and functional lesion severity were evaluated with QCA to derive percentage area stenosis (%AS), vessel fractional flow reserve (vFFR), and translesional vFFR (ΔvFFR). Wall shear stress profiles were investigated in terms of topological shear variation index (TSVI). KER and RER predicted MI at 5 years (AUC = 0.73, 95% CI 0.65-0.80, and AUC = 0.76, 95% CI 0.70-0.83, respectively; p < 0.0001 for both). The predictive capacity for future MI of KER and RER was significantly stronger than vFFR (p = 0.0391 and p = 0.0045, respectively). RER predictive capacity was significantly stronger than %AS and ΔvFFR (p = 0.0041 and p = 0.0059, respectively). The predictive capacity for future MI of KER and RER did not differ significantly from TSVI. Blood flow kinetic and rotational energy transformations were significant predictors for MI at 5 years (p < 0.0001). The findings of this study support the hypothesis of a biomechanical contribution to the process of plaque destabilization/rupture leading to MI.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Infarto del Miocardio , Humanos , Vasos Coronarios , Angiografía Coronaria , Valor Predictivo de las Pruebas , Índice de Severidad de la Enfermedad
13.
Eur Radiol ; 34(4): 2677-2688, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37798406

RESUMEN

OBJECTIVE: To assess the accuracy of a virtual stenting tool based on coronary CT angiography (CCTA) and fractional flow reserve (FFR) derived from CCTA (FFRCT Planner) across different levels of image quality. MATERIALS AND METHODS: Prospective, multicenter, single-arm study of patients with chronic coronary syndromes and lesions with FFR ≤ 0.80. All patients underwent CCTA performed with recent-generation scanners. CCTA image quality was adjudicated using the four-point Likert scale at a per-vessel level by an independent committee blinded to the FFRCT Planner. Patient- and technical-related factors that could affect the FFRCT Planner accuracy were evaluated. The FFRCT Planner was applied mirroring percutaneous coronary intervention (PCI) to determine the agreement with invasively measured post-PCI FFR. RESULTS: Overall, 120 patients (123 vessels) were included. Invasive post-PCI FFR was 0.88 ± 0.06 and Planner FFRCT was 0.86 ± 0.06 (mean difference 0.02 FFR units, the lower limit of agreement (LLA) - 0.12, upper limit of agreement (ULA) 0.15). CCTA image quality was assessed as excellent (Likert score 4) in 48.3%, good (Likert score 3) in 45%, and sufficient (Likert score 2) in 6.7% of patients. The FFRCT Planner was accurate across different levels of image quality with a mean difference between FFRCT Planner and invasive post-PCI FFR of 0.02 ± 0.07 in Likert score 4, 0.02 ± 0.07 in Likert score 3 and 0.03 ± 0.08 in Likert score 2, p = 0.695. Nitrate dose ≥ 0.8mg was the only independent factor associated with the accuracy of the FFRCT Planner (95%CI - 0.06 to - 0.001, p = 0.040). CONCLUSION: The FFRCT Planner was accurate in predicting post-PCI FFR independent of CCTA image quality. CLINICAL RELEVANCE STATEMENT: Being accurate in predicting post-PCI FFR across a wide spectrum of CT image quality, the FFRCT Planner could potentially enhance and guide the invasive treatment. Adequate vasodilation during CT acquisition is relevant to improve the accuracy of the FFRCT Planner. KEY POINTS: • The fractional flow reserve derived from coronary CT angiography (FFRCT) Planner is a novel tool able to accurately predict fractional flow reserve after percutaneous coronary intervention. • The accuracy of the FFRCT Planner was confirmed across a wide spectrum of CT image quality. Nitrates dose at CT acquisition was the only independent predictor of its accuracy. • The FFRCT Planner could potentially enhance and guide the invasive treatment.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Intervención Coronaria Percutánea , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Estudios Prospectivos , Tomografía Computarizada por Rayos X , Angiografía Coronaria/métodos , Angiografía por Tomografía Computarizada/métodos , Estenosis Coronaria/terapia , Valor Predictivo de las Pruebas
14.
Heart ; 110(6): 391-398, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-37827561

RESUMEN

Coronary physiology assessment, including epicardial and microvascular investigations, is a fundamental tool in the contemporary management of patients with coronary artery disease. Coronary revascularisation guided by functional evaluation has demonstrated superiority over angiography-only-guided treatment. In patients with chronic coronary syndrome, revascularisation did not demonstrate prognostic advantage in terms of mortality over optimal medical therapy (OMT). However, revascularisation of coronary stenosis, which induces myocardial ischaemia, has demonstrated better outcome than OMT alone. Pressure wire (PW) or angiography-based longitudinal coronary physiology provides a point-by-point analysis of the vessel to detect the atherosclerotic pattern of coronary disease. A careful evaluation of this disease pattern allows clinicians to choose the appropriate management strategy.Patients with diffuse disease showed a twofold risk of residual angina after percutaneous coronary intervention (PCI) than those with focal disease. Therefore, OMT alone or coronary artery bypass graft might be considered over PCI. In addition, the post-PCI physiological assessment aims to optimise the result revealing residual myocardial ischaemia. Improvement in post-PCI PW or angiography-based functional indices has been associated with better quality of life and reduced risk of cardiac events and residual angina. Therefore, the information obtained from coronary physiology allows for an optimised treatment strategy, which ultimately leads to improve patient's prognosis and quality of life. This review provides an overview of the latest available evidence in the literature regarding the use of functional assessment of epicardial coronary stenosis in different settings in the contemporary patient-tailored management of coronary disease.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Isquemia Miocárdica , Intervención Coronaria Percutánea , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/terapia , Intervención Coronaria Percutánea/efectos adversos , Calidad de Vida , Resultado del Tratamiento , Angina de Pecho/terapia , Isquemia Miocárdica/etiología , Angiografía Coronaria
15.
Int J Cardiol ; 399: 131668, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38141723

RESUMEN

BACKGROUND AND AIMS: Coronary hemodynamics impact coronary plaque progression and destabilization. The aim of the present study was to establish the association between focal vs. diffuse intracoronary pressure gradients and wall shear stress (WSS) patterns with atherosclerotic plaque composition. METHODS: Prospective, international, single-arm study of patients with chronic coronary syndromes and hemodynamic significant lesions (fractional flow reserve [FFR] ≤ 0.80). Motorized FFR pullback pressure gradient (PPG), optical coherence tomography (OCT), and time-average WSS (TAWSS) and topological shear variation index (TSVI) derived from three-dimensional angiography were obtained. RESULTS: One hundred five vessels (median FFR 0.70 [Interquartile range (IQR) 0.56-0.77]) had combined PPG and WSS analyses. TSVI was correlated with PPG (r = 0.47, [95% Confidence Interval (95% CI) 0.30-0.65], p < 0.001). Vessels with a focal CAD (PPG above the median value of 0.67) had significantly higher TAWSS (14.8 [IQR 8.6-24.3] vs. 7.03 [4.8-11.7] Pa, p < 0.001) and TSVI (163.9 [117.6-249.2] vs. 76.8 [23.1-140.9] m-1, p < 0.001). In the 51 vessels with baseline OCT, TSVI was associated with plaque rupture (OR 1.01 [1.00-1.02], p = 0.024), PPG with the extension of lipids (OR 7.78 [6.19-9.77], p = 0.003), with the presence of thin-cap fibroatheroma (OR 2.85 [1.11-7.83], p = 0.024) and plaque rupture (OR 4.94 [1.82 to 13.47], p = 0.002). CONCLUSIONS: Focal and diffuse coronary artery disease, defined using coronary physiology, are associated with differential WSS profiles. Pullback pressure gradients and WSS profiles are associated with atherosclerotic plaque phenotypes. Focal disease (as identified by high PPG) and high TSVI are associated with high-risk plaque features. CLINICAL TRIAL REGISTRATION: https://clinicaltrials,gov/ct2/show/NCT03782688.


Asunto(s)
Enfermedad de la Arteria Coronaria , Reserva del Flujo Fraccional Miocárdico , Placa Aterosclerótica , Humanos , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología , Reserva del Flujo Fraccional Miocárdico/fisiología , Hemodinámica , Fenotipo , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/patología , Valor Predictivo de las Pruebas , Estudios Prospectivos
16.
Int J Cardiol ; 399: 131663, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38141730

RESUMEN

BACKGROUND: FFRangio and QFR are angiography-based technologies that have been validated in patients with stable coronary artery disease. No head-to-head comparison to invasive fractional flow reserve (FFR) has been reported to date in patients with acute coronary syndromes (ACS). METHODS: This study is a subset of a larger prospective multicenter, single-arm study that involved patients diagnosed with high-risk ACS in whom 30-70% stenosis was evaluated by FFR. FFRangio and QFR - both calculated offline by 2 different and blinded operators - were calculated and compared to FFR. The two co-primary endpoints were the comparison of the Pearson correlation coefficient between FFRangio and QFR with FFR and the comparison of their inter-observer variability. RESULTS: Among 134 high-risk ACS screened patients, 59 patients with 84 vessels underwent FFR measurements and were included in this study. The mean FFR value was 0.82 ± 0.40 with 32 (38%) being ≤0.80. The mean FFRangio was 0.82 ± 0.20 and the mean QFR was 0.82 ± 0.30, with 27 (32%) and 25 (29%) being ≤0.80, respectively. The Pearson correlation coefficient was significantly better for FFRangio compared to QFR, with R values of 0.76 and 0.61, respectively (p = 0.01). The inter-observer agreement was also significantly better for FFRangio compared to QFR (0.86 vs 0.79, p < 0.05). FFRangio had 91% sensitivity, 100% specificity, and 96.8% accuracy, while QFR exhibited 86.4% sensitivity, 98.4% specificity, and 93.7% accuracy. CONCLUSION: In patients with high-risk ACS, FFRangio and QFR demonstrated excellent diagnostic performance. FFRangio seems to have better correlation to invasive FFR compared to QFR but further larger validation studies are required.


Asunto(s)
Síndrome Coronario Agudo , Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Humanos , Estudios Prospectivos , Estenosis Coronaria/diagnóstico por imagen , Angiografía Coronaria/métodos , Síndrome Coronario Agudo/diagnóstico por imagen , Valor Predictivo de las Pruebas , Vasos Coronarios , Índice de Severidad de la Enfermedad
17.
Interv Cardiol ; 18: e26, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125928

RESUMEN

The role of coronary CT angiography for the diagnosis and risk stratification of coronary artery disease is well established. However, its potential beyond the diagnostic phase remains to be determined. The current review focuses on the insights that coronary CT angiography can provide when planning and performing percutaneous coronary interventions. We describe a novel approach incorporating anatomical and functional pre-procedural planning enhanced by artificial intelligence, computational physiology and online 3D CT guidance for percutaneous coronary interventions. This strategy allows the individualisation of patient selection, optimisation of the revascularisation strategy and effective use of resources.

18.
JACC Cardiovasc Interv ; 16(22): 2767-2777, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38030361

RESUMEN

BACKGROUND: Coronary flow reserve (CFR) and microvascular resistance reserve (MRR) can, in principle, be derived by any method assessing coronary flow. OBJECTIVES: The aim of this study was to compare CFR and MRR as derived by continuous (CFRcont and MRRcont) and bolus thermodilution (CFRbolus and MRRbolus). METHODS: A total of 175 patients with chest pain and nonobstructive coronary artery disease were studied. Bolus and continuous thermodilution measurements were performed in the left anterior descending coronary artery. MRR was calculated as the ratio of CFR to fractional flow reserve and corrected for changes in systemic pressure. In 102 patients, bolus and continuous thermodilution measurements were performed in duplicate to assess test-retest reliability. RESULTS: Mean CFRbolus was higher than CFRcont (3.47 ± 1.42 and 2.67 ± 0.81 [P < 0.001], mean difference 0.80, upper limit of agreement 3.92, lower limit of agreement -2.32). Mean MRRbolus was also higher than MRRcont (4.40 ± 1.99 and 3.22 ± 1.02 [P < 0.001], mean difference 1.2, upper limit of agreement 5.08, lower limit of agreement -2.71). The correlation between CFR and MRR values obtained using both methods was significant but weak (CFR, r = 0.28 [95% CI: 0.14-0.41]; MRR, r = 0.26 [95% CI: 0.16-0.39]; P < 0.001 for both). The precision of both CFR and MRR was higher when assessed using continuous thermodilution compared with bolus thermodilution (repeatability coefficients of 0.89 and 2.79 for CFRcont and CFRbolus, respectively, and 1.01 and 3.05 for MRRcont and MRRbolus, respectively). CONCLUSIONS: Compared with bolus thermodilution, continuous thermodilution yields lower values of CFR and MRR accompanied by an almost 3-fold reduction of the variability in the measured results.


Asunto(s)
Circulación Coronaria , Reserva del Flujo Fraccional Miocárdico , Humanos , Termodilución/métodos , Reproducibilidad de los Resultados , Resultado del Tratamiento , Vasos Coronarios , Microcirculación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...