Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
medRxiv ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36909607

RESUMEN

Purpose: To calibrate Cancer Intervention and Surveillance Modeling Network (CISNET) 's SimCRC, MISCAN-Colon, and CRC-SPIN simulation models of the natural history colorectal cancer (CRC) with an emulator-based Bayesian algorithm and internally validate the model-predicted outcomes to calibration targets. Methods: We used Latin hypercube sampling to sample up to 50,000 parameter sets for each CISNET-CRC model and generated the corresponding outputs. We trained multilayer perceptron artificial neural networks (ANN) as emulators using the input and output samples for each CISNET-CRC model. We selected ANN structures with corresponding hyperparameters (i.e., number of hidden layers, nodes, activation functions, epochs, and optimizer) that minimize the predicted mean square error on the validation sample. We implemented the ANN emulators in a probabilistic programming language and calibrated the input parameters with Hamiltonian Monte Carlo-based algorithms to obtain the joint posterior distributions of the CISNET-CRC models' parameters. We internally validated each calibrated emulator by comparing the model-predicted posterior outputs against the calibration targets. Results: The optimal ANN for SimCRC had four hidden layers and 360 hidden nodes, MISCAN-Colon had 4 hidden layers and 114 hidden nodes, and CRC-SPIN had one hidden layer and 140 hidden nodes. The total time for training and calibrating the emulators was 7.3, 4.0, and 0.66 hours for SimCRC, MISCAN-Colon, and CRC-SPIN, respectively. The mean of the model-predicted outputs fell within the 95% confidence intervals of the calibration targets in 98 of 110 for SimCRC, 65 of 93 for MISCAN, and 31 of 41 targets for CRC-SPIN. Conclusions: Using ANN emulators is a practical solution to reduce the computational burden and complexity for Bayesian calibration of individual-level simulation models used for policy analysis, like the CISNET CRC models. In this work, we present a step-by-step guide to constructing emulators for calibrating three realistic CRC individual-level models using a Bayesian approach.

2.
Lancet Reg Health Am ; 28: 100628, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38026447

RESUMEN

Background: Understanding the impact of incarceration on HIV transmission among Black men who have sex with men is important given their disproportionate representation among people experiencing incarceration and the potential impact of incarceration on social and sexual networks, employment, housing, and medical care. We developed an agent-based network model (ABNM) of 10,000 agents representing young Black men who have sex with men in the city of Chicago to examine the impact of varying degrees of post-incarceration care disruption and care engagement interventions following release from jail on HIV incidence. Methods: Exponential random graph models were used to model network formation and dissolution dynamics, and network dynamics and HIV care continuum engagement were varied according to incarceration status. Hypothetical interventions to improve post-release engagement in HIV care for individuals with incarceration (e.g., enhanced case management, linkage to housing and employment services) were compared to a control scenario with no change in HIV care engagement after release. Finding: HIV incidence at 10 years was 4.98 [95% simulation interval (SI): 4.87, 5.09 per 100 person-years (py)] in the model population overall; 5.58 (95% SI 5.38, 5.76 per 100 py) among those with history of incarceration, and 12.86 (95% SI 11.89, 13.73 per 100 py) among partners of agents recently released from incarceration. Sustained post-release HIV care for agents with HIV and experiencing recent incarceration resulted in a 46% reduction in HIV incidence among post-incarceration partners [incidence rate (IR) per 100 py = 5.72 (95% SI 5.19, 6.27) vs. 10.61 (95% SI 10.09, 11.24); incidence rate ratio (IRR) = 0.54; (95% SI 0.48, 0.60)] and a 19% reduction in HIV incidence in the population overall [(IR per 100 py = 3.89 (95% SI 3.81-3.99) vs. 4.83 (95% SI 4.73, 4.92); IRR = 0.81 (95% SI 0.78, 0.83)] compared to a scenario with no change in HIV care engagement from pre-to post-release. Interpretation: Developing effective and scalable interventions to increase HIV care engagement among individuals experiencing recent incarceration and their sexual partners is needed to reduce HIV transmission among Black men who have sex with men. Funding: This work was supported by the following grants from the National Institutes of Health: R01DA039934; P20 GM 130414; P30 AI 042853; P30MH058107; T32 DA 043469; U2C DA050098 and the California HIV/AIDS Research Program: OS17-LA-003; H21PC3466.

3.
PLoS Comput Biol ; 19(8): e1011309, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37535676

RESUMEN

Hepatitis B virus (HBV) infection kinetics in immunodeficient mice reconstituted with humanized livers from inoculation to steady state is highly dynamic despite the absence of an adaptive immune response. To recapitulate the multiphasic viral kinetic patterns, we developed an agent-based model that includes intracellular virion production cycles reflecting the cyclic nature of each individual virus lifecycle. The model fits the data well predicting an increase in production cycles initially starting with a long production cycle of 1 virion per 20 hours that gradually reaches 1 virion per hour after approximately 3-4 days before virion production increases dramatically to reach to a steady state rate of 4 virions per hour per cell. Together, modeling suggests that it is the cyclic nature of the virus lifecycle combined with an initial slow but increasing rate of HBV production from each cell that plays a role in generating the observed multiphasic HBV kinetic patterns in humanized mice.


Asunto(s)
Hepatitis B , Replicación Viral , Animales , Ratones , Cinética , ADN Viral , Virus de la Hepatitis B/genética , Virión/fisiología
4.
medRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37292847

RESUMEN

Access to treatment and medication for opioid use disorder (MOUD) is essential in reducing opioid use and associated behavioral risks, such as syringe sharing among persons who inject drugs (PWID). Syringe sharing among PWID carries high risk of transmission of serious infections such as hepatitis C and HIV. MOUD resources, such as methadone provider clinics, however, are often unavailable to PWID due to barriers like long travel distance to the nearest methadone provider and the required frequency of clinic visits. The goal of this study is to examine the uncertainty in the effects of travel distance in initiating and continuing methadone treatment and how these interact with different spatial distributions of methadone providers to impact co-injection (syringe sharing) risks. A baseline scenario of spatial access was established using the existing locations of methadone providers in a geographical area of metropolitan Chicago, Illinois, USA. Next, different counterfactual scenarios redistributed the locations of methadone providers in this geographic area according to the densities of both the general adult population and according to the PWID population per zip code. We define different reasonable methadone access assumptions as the combinations of short, medium, and long travel distance preferences combined with three urban/suburban travel distance preference. Our modeling results show that when there is a low travel distance preference for accessing methadone providers, distributing providers near areas that have the greatest need (defined by density of PWID) is best at reducing syringe sharing behaviors. However, this strategy also decreases access across suburban locales, posing even greater difficulty in regions with fewer transit options and providers. As such, without an adequate number of providers to give equitable coverage across the region, spatial distribution cannot be optimized to provide equitable access to all PWID. Our study has important implications for increasing interest in methadone as a resurgent treatment for MOUD in the United States and for guiding policy toward improving access to MOUD among PWID.

5.
Elife ; 122023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37129468

RESUMEN

The aftermath of the initial phase of the COVID-19 pandemic may contribute to the widening of disparities in colorectal cancer (CRC) outcomes due to differential disruptions to CRC screening. This comparative microsimulation analysis uses two CISNET CRC models to simulate the impact of ongoing screening disruptions induced by the COVID-19 pandemic on long-term CRC outcomes. We evaluate three channels through which screening was disrupted: delays in screening, regimen switching, and screening discontinuation. The impact of these disruptions on long-term CRC outcomes was measured by the number of life-years lost due to CRC screening disruptions compared to a scenario without any disruptions. While short-term delays in screening of 3-18 months are predicted to result in minor life-years loss, discontinuing screening could result in much more significant reductions in the expected benefits of screening. These results demonstrate that unequal recovery of screening following the pandemic can widen disparities in CRC outcomes and emphasize the importance of ensuring equitable recovery to screening following the pandemic.


Asunto(s)
COVID-19 , Neoplasias Colorrectales , Humanos , COVID-19/epidemiología , Pandemias , Detección Precoz del Cáncer/métodos , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/epidemiología
6.
medRxiv ; 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36945378

RESUMEN

Colorectal Cancer (CRC) is a leading cause of cancer deaths in the United States. Despite significant overall declines in CRC incidence and mortality, there has been an alarming increase in CRC among people younger than 50. This study uses an established microsimulation model, CRC-SPIN, to perform a 'stress test' of colonoscopy screening strategies. First, we expand CRC-SPIN to include birth-cohort effects. Second, we estimate natural history model parameters via Incremental Mixture Approximate Bayesian Computation (IMABC) for two model versions to characterize uncertainty while accounting for increased early CRC onset. Third, we simulate 26 colonoscopy screening strategies across the posterior distribution of estimated model parameters, assuming four different colonoscopy sensitivities (104 total scenarios). We find that model projections of screening benefit are highly dependent on natural history and test sensitivity assumptions, but in this stress test, the policy recommendations are robust to the uncertainties considered.

7.
Med Care ; 61(1): 12-19, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36477617

RESUMEN

CONTEXT: Medicaid expansion has been nationally shown to improve engagement in the human immunodeficiency virus (HIV) treatment and prevention continua, which are vital steps to stopping the HIV epidemic. New HIV infections in the United States are disproportionately concentrated among young Black men who have sex with men (YBMSM). Houston, TX, is the most populous city in the Southern United States with a racially/ethnically diverse population that is located in 1 of 11 US states that have not yet expanded Medicaid coverage as of 2021. METHODS: An agent-based model that incorporated the sexual networks of YBMSM was used to simulate improved antiretroviral treatment and pre-exposure prophylaxis (PrEP) engagement through Medicaid expansion in Houston, TX. Analyses considered the HIV incidence (number of new infections and as a rate metric) among YBMSM over the next 10 years under Medicaid expansion as the primary outcome. Additional scenarios, involving viral suppression and PrEP uptake above the projected levels achieved under Medicaid expansion, were also simulated. RESULTS: The baseline model projected an HIV incidence rate of 4.96 per 100 person years (py) and about 368 new annual HIV infections in the 10th year. Improved HIV treatment and prevention continua engagement under Medicaid expansion resulted in a 14.9% decline in the number of annual new HIV infections in the 10th year. Increasing viral suppression by an additional 15% and PrEP uptake by 30% resulted in a 44.0% decline in new HIV infections in the 10th year, and a 27.1% decline in cumulative infections across the 10 years of the simulated intervention. FINDINGS: Simulation results indicate that Medicaid expansion has the potential to reduce HIV incidence among YBMSM in Houston. Achieving HIV elimination objectives, however, might require additional effective measures to increase antiretroviral treatment and PrEP uptake beyond the projected improvements under expanded Medicaid.


Asunto(s)
Infecciones por VIH , Minorías Sexuales y de Género , Humanos , Masculino , VIH , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Infecciones por VIH/prevención & control , Homosexualidad Masculina , Texas/epidemiología
8.
Front Physiol ; 13: 780917, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615677

RESUMEN

Background: We evaluated the implications of different approaches to characterize the uncertainty of calibrated parameters of microsimulation decision models (DMs) and quantified the value of such uncertainty in decision making. Methods: We calibrated the natural history model of CRC to simulated epidemiological data with different degrees of uncertainty and obtained the joint posterior distribution of the parameters using a Bayesian approach. We conducted a probabilistic sensitivity analysis (PSA) on all the model parameters with different characterizations of the uncertainty of the calibrated parameters. We estimated the value of uncertainty of the various characterizations with a value of information analysis. We conducted all analyses using high-performance computing resources running the Extreme-scale Model Exploration with Swift (EMEWS) framework. Results: The posterior distribution had a high correlation among some parameters. The parameters of the Weibull hazard function for the age of onset of adenomas had the highest posterior correlation of -0.958. When comparing full posterior distributions and the maximum-a-posteriori estimate of the calibrated parameters, there is little difference in the spread of the distribution of the CEA outcomes with a similar expected value of perfect information (EVPI) of $653 and $685, respectively, at a willingness-to-pay (WTP) threshold of $66,000 per quality-adjusted life year (QALY). Ignoring correlation on the calibrated parameters' posterior distribution produced the broadest distribution of CEA outcomes and the highest EVPI of $809 at the same WTP threshold. Conclusion: Different characterizations of the uncertainty of calibrated parameters affect the expected value of eliminating parametric uncertainty on the CEA. Ignoring inherent correlation among calibrated parameters on a PSA overestimates the value of uncertainty.

9.
PLoS One ; 17(3): e0264983, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35271634

RESUMEN

Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease and mortality worldwide. Direct-acting antiviral (DAA) therapy leads to high cure rates. However, persons who inject drugs (PWID) are at risk for reinfection after cure and may require multiple DAA treatments to reach the World Health Organization's (WHO) goal of HCV elimination by 2030. Using an agent-based model (ABM) that accounts for the complex interplay of demographic factors, risk behaviors, social networks, and geographic location for HCV transmission among PWID, we examined the combination(s) of DAA enrollment (2.5%, 5%, 7.5%, 10%), adherence (60%, 70%, 80%, 90%) and frequency of DAA treatment courses needed to achieve the WHO's goal of reducing incident chronic infections by 90% by 2030 among a large population of PWID from Chicago, IL and surrounding suburbs. We also estimated the economic DAA costs associated with each scenario. Our results indicate that a DAA treatment rate of >7.5% per year with 90% adherence results in 75% of enrolled PWID requiring only a single DAA course; however 19% would require 2 courses, 5%, 3 courses and <2%, 4 courses, with an overall DAA cost of $325 million to achieve the WHO goal in metropolitan Chicago. We estimate a 28% increase in the overall DAA cost under low adherence (70%) compared to high adherence (90%). Our modeling results have important public health implications for HCV elimination among U.S. PWID. Using a range of feasible treatment enrollment and adherence rates, we report robust findings supporting the need to address re-exposure and reinfection among PWID to reduce HCV incidence.


Asunto(s)
Consumidores de Drogas , Hepatitis C Crónica , Hepatitis C , Abuso de Sustancias por Vía Intravenosa , Antivirales/uso terapéutico , Chicago/epidemiología , Hepacivirus , Hepatitis C/complicaciones , Hepatitis C/tratamiento farmacológico , Hepatitis C/epidemiología , Hepatitis C Crónica/tratamiento farmacológico , Humanos , Reinfección , Abuso de Sustancias por Vía Intravenosa/complicaciones , Abuso de Sustancias por Vía Intravenosa/tratamiento farmacológico , Abuso de Sustancias por Vía Intravenosa/epidemiología
10.
BMC Med Inform Decis Mak ; 22(1): 12, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022005

RESUMEN

BACKGROUND: Microsimulation models are mathematical models that simulate event histories for individual members of a population. They are useful for policy decisions because they simulate a large number of individuals from an idealized population, with features that change over time, and the resulting event histories can be summarized to describe key population-level outcomes. Model calibration is the process of incorporating evidence into the model. Calibrated models can be used to make predictions about population trends in disease outcomes and effectiveness of interventions, but calibration can be challenging and computationally expensive. METHODS: This paper develops a technique for sequentially updating models to take full advantage of earlier calibration results, to ultimately speed up the calibration process. A Bayesian approach to calibration is used because it combines different sources of evidence and enables uncertainty quantification which is appealing for decision-making. We develop this method in order to re-calibrate a microsimulation model for the natural history of colorectal cancer to include new targets that better inform the time from initiation of preclinical cancer to presentation with clinical cancer (sojourn time), because model exploration and validation revealed that more information was needed on sojourn time, and that the predicted percentage of patients with cancers detected via colonoscopy screening was too low. RESULTS: The sequential approach to calibration was more efficient than recalibrating the model from scratch. Incorporating new information on the percentage of patients with cancers detected upon screening changed the estimated sojourn time parameters significantly, increasing the estimated mean sojourn time for cancers in the colon and rectum, providing results with more validity. CONCLUSIONS: A sequential approach to recalibration can be used to efficiently recalibrate a microsimulation model when new information becomes available that requires the original targets to be supplemented with additional targets.


Asunto(s)
Colonoscopía , Modelos Teóricos , Teorema de Bayes , Calibración , Humanos , Tamizaje Masivo
11.
medRxiv ; 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36597528

RESUMEN

The aftermath of the initial phase of the COVID-19 pandemic may contribute to the widening of disparities in access to colorectal cancer (CRC) screening due to differential disruptions to CRC screening. This comparative microsimulation analysis uses two CISNET CRC models to simulate the impact of ongoing screening disruptions induced by the COVID-19 pandemic on long-term CRC outcomes. We evaluate three channels through which screening was disrupted: delays in screening, regimen switching, and screening discontinuation. The impact of these disruptions on long-term colorectal cancer (CRC) outcomes was measured by the number of Life-years lost due to CRC screening disruptions compared to a scenario without any disruptions. While short-term delays in screening of 3-18 months are predicted to result in minor life-years loss, discontinuing screening could result in much more significant reductions in the expected benefits of screening. These results demonstrate that unequal recovery of screening following the pandemic can widen disparities in colorectal cancer outcomes and emphasize the importance of ensuring equitable recovery to screening following the pandemic.

12.
Proc Winter Simul Conf ; 2022: 192-206, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36777718

RESUMEN

The increasing availability of high-performance computing (HPC) has accelerated the potential for applying computational simulation to capture ever more granular features of large, complex systems. This tutorial presents Repast4Py, the newest member of the Repast Suite of agent-based modeling toolkits. Repast4Py is a Python agent-based modeling framework that provides the ability to build large, MPI-distributed agent-based models (ABM) that span multiple processing cores. Simplifying the process of constructing large-scale ABMs, Repast4Py is designed to provide an easier on-ramp for researchers from diverse scientific communities to apply distributed ABM methods. We will present key Repast4Py components and how they are combined to create distributed simulations of different types, building on three example models that implement seven common distributed ABM use cases. We seek to illustrate the relationship between model structure and performance considerations, providing guidance on how to leverage Repast4Py features to develop well designed and performant distributed ABMs.

13.
PLoS Comput Biol ; 17(10): e1009471, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34695116

RESUMEN

CommunityRx (CRx), an information technology intervention, provides patients with a personalized list of healthful community resources (HealtheRx). In repeated clinical studies, nearly half of those who received clinical "doses" of the HealtheRx shared their information with others ("social doses"). Clinical trial design cannot fully capture the impact of information diffusion, which can act as a force multiplier for the intervention. Furthermore, experimentation is needed to understand how intervention delivery can optimize social spread under varying circumstances. To study information diffusion from CRx under varying conditions, we built an agent-based model (ABM). This study describes the model building process and illustrates how an ABM provides insight about information diffusion through in silico experimentation. To build the ABM, we constructed a synthetic population ("agents") using publicly-available data sources. Using clinical trial data, we developed empirically-informed processes simulating agent activities, resource knowledge evolution and information sharing. Using RepastHPC and chiSIM software, we replicated the intervention in silico, simulated information diffusion processes, and generated emergent information diffusion networks. The CRx ABM was calibrated using empirical data to replicate the CRx intervention in silico. We used the ABM to quantify information spread via social versus clinical dosing then conducted information diffusion experiments, comparing the social dosing effect of the intervention when delivered by physicians, nurses or clinical clerks. The synthetic population (N = 802,191) exhibited diverse behavioral characteristics, including activity and knowledge evolution patterns. In silico delivery of the intervention was replicated with high fidelity. Large-scale information diffusion networks emerged among agents exchanging resource information. Varying the propensity for information exchange resulted in networks with different topological characteristics. Community resource information spread via social dosing was nearly 4 fold that from clinical dosing alone and did not vary by delivery mode. This study, using CRx as an example, demonstrates the process of building and experimenting with an ABM to study information diffusion from, and the population-level impact of, a clinical information-based intervention. While the focus of the CRx ABM is to recreate the CRx intervention in silico, the general process of model building, and computational experimentation presented is generalizable to other large-scale ABMs of information diffusion.


Asunto(s)
Redes Comunitarias , Intercambio de Información en Salud , Derivación y Consulta , Análisis de Sistemas , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Recursos Comunitarios , Simulación por Computador , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
14.
PLoS One ; 16(10): e0259166, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34699570

RESUMEN

The COVID-19 pandemic required significant public health interventions from local governments. Although nonpharmaceutical interventions often were implemented as decision rules, few studies evaluated the robustness of those reopening plans under a wide range of uncertainties. This paper uses the Robust Decision Making approach to stress-test 78 alternative reopening strategies, using California as an example. This study uniquely considers a wide range of uncertainties and demonstrates that seemingly sensible reopening plans can lead to both unnecessary COVID-19 deaths and days of interventions. We find that plans using fixed COVID-19 case thresholds might be less effective than strategies with time-varying reopening thresholds. While we use California as an example, our results are particularly relevant for jurisdictions where vaccination roll-out has been slower. The approach used in this paper could also prove useful for other public health policy problems in which policymakers need to make robust decisions in the face of deep uncertainty.


Asunto(s)
COVID-19 , Pandemias , Humanos , Salud Pública , Incertidumbre
15.
Math Biosci Eng ; 18(4): 3922-3938, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-34198418

RESUMEN

OBJECTIVES: Getting to Zero (GTZ) initiatives focus on expanding use of antiretroviral treatment (ART) and pre-exposure prophylaxis (PrEP) to eliminate new HIV infections. Computational models help inform policies for implementation of ART and PrEP continuums. Such models, however, vary in their design, and may yield inconsistent predictions. Using multiple approaches can help assess the consistency in results obtained from varied modeling frameworks, and can inform optimal implementation strategies. METHODS: A study using three different modeling approaches is conducted. Two approaches use statistical time series analysis techniques that incorporate temporal HIV incidence data. A third approach uses stochastic stimulation, conducted using an agent-based network model (ABNM). All three approaches are used to project HIV incidence among a key population, young Black MSM (YBMSM), over the course of the GTZ implementation period (2016-2030). RESULTS: All three approaches suggest that simultaneously increasing PrEP and ART uptake is likely to be more effective than increasing only one, but increasing ART and PrEP by 20% points may not eliminate new HIV infections among YBMSM. The results further suggest that a 20% increase in ART is likely to be more effective than a 20% increase in PrEP. All three methods consistently project that increasing ART and PrEP by 30% simultaneously can help reach GTZ goals. CONCLUSIONS: Increasing PrEP and ART uptake by about 30% might be necessary to accomplish GTZ goals. Such scale-up may require addressing psychosocial and structural barriers to engagement in HIV and PrEP care continuums. ABNMs and other flexible modeling approaches can be extended to examine specific interventions that address these barriers and may provide important data to guide the successful intervention implementation.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Profilaxis Pre-Exposición , Fármacos Anti-VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Infecciones por VIH/prevención & control , Homosexualidad Masculina , Humanos , Illinois , Masculino
16.
medRxiv ; 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33948599

RESUMEN

Amid global scarcity of COVID-19 vaccines and the threat of new variant strains, California and other jurisdictions face the question of when and how to implement and relax COVID-19 Nonpharmaceutical Interventions (NPIs). While policymakers have attempted to balance the health and economic impacts of the pandemic, decentralized decision-making, deep uncertainty, and the lack of widespread use of comprehensive decision support methods can lead to the choice of fragile or inefficient strategies. This paper uses simulation models and the Robust Decision Making (RDM) approach to stress-test California's reopening strategy and other alternatives over a wide range of futures. We find that plans which respond aggressively to initial outbreaks are required to robustly control the pandemic. Further, the best plans adapt to changing circumstances, lowering their stringent requirements to reopen over time or as more constituents are vaccinated. While we use California as an example, our results are particularly relevant for jurisdictions where vaccination roll-out has been slower.

17.
Front Physiol ; 12: 718276, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35153804

RESUMEN

BACKGROUND: Fecal immunochemical testing (FIT) is an established method for colorectal cancer (CRC) screening. Measured FIT-concentrations are associated with both present and future risk of CRC, and may be used for personalized screening. However, evaluation of personalized screening is computationally challenging. In this study, a broadly applicable algorithm is presented to efficiently optimize personalized screening policies that prescribe screening intervals and FIT-cutoffs, based on age and FIT-history. METHODS: We present a mathematical framework for personalized screening policies and a bi-objective evolutionary algorithm that identifies policies with minimal costs and maximal health benefits. The algorithm is combined with an established microsimulation model (MISCAN-Colon), to accurately estimate the costs and benefits of generated policies, without restrictive Markov assumptions. The performance of the algorithm is demonstrated in three experiments. RESULTS: In Experiment 1, a relatively small benchmark problem, the optimal policies were known. The algorithm approached the maximum feasible benefits with a relative difference of 0.007%. Experiment 2 optimized both intervals and cutoffs, Experiment 3 optimized cutoffs only. Optimal policies in both experiments are unknown. Compared to policies recently evaluated for the USPSTF, personalized screening increased health benefits up to 14 and 4.3%, for Experiments 2 and 3, respectively, without adding costs. Generated policies have several features concordant with current screening recommendations. DISCUSSION: The method presented in this paper is flexible and capable of optimizing personalized screening policies evaluated with computationally-intensive but established simulation models. It can be used to inform screening policies for CRC or other diseases. For CRC, more debate is needed on what features a policy needs to exhibit to make it suitable for implementation in practice.

18.
Artículo en Inglés | MEDLINE | ID: mdl-35865008

RESUMEN

Criminal justice involved (CJI) individuals with a history of opioid use disorder (OUD) are at high risk of overdose and death in the weeks following release from jail. We developed the Justice-Community Circulation Model (JCCM) to investigate OUD/CJI dynamics post-release and the effects of interventions on overdose deaths. The JCCM uses a synthetic agent-based model population of approximately 150,000 unique individuals that is generated using demographic information collected from multiple Chicago-area studies and data sets. We use a high-performance computing (HPC) workflow to implement a sequential approximate Bayesian computation algorithm for calibrating the JCCM. The calibration results in the simulated joint posterior distribution of the JCCM input parameters. The calibrated model is used to investigate the effects of a naloxone intervention for a mass jail release. The simulation results show the degree to which a targeted intervention focusing on recently released jail inmates can help reduce the risk of death from opioid overdose.

19.
bioRxiv ; 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32511322

RESUMEN

The 2019 novel coronavirus, SARS-CoV-2, is a pathogen of critical significance to international public health. Knowledge of the interplay between molecular-scale virus-receptor interactions, single-cell viral replication, intracellular-scale viral transport, and emergent tissue-scale viral propagation is limited. Moreover, little is known about immune system-virus-tissue interactions and how these can result in low-level (asymptomatic) infections in some cases and acute respiratory distress syndrome (ARDS) in others, particularly with respect to presentation in different age groups or pre-existing inflammatory risk factors. Given the nonlinear interactions within and among each of these processes, multiscale simulation models can shed light on the emergent dynamics that lead to divergent outcomes, identify actionable "choke points" for pharmacologic interventions, screen potential therapies, and identify potential biomarkers that differentiate patient outcomes. Given the complexity of the problem and the acute need for an actionable model to guide therapy discovery and optimization, we introduce and iteratively refine a prototype of a multiscale model of SARS-CoV-2 dynamics in lung tissue. The first prototype model was built and shared internationally as open source code and an online interactive model in under 12 hours, and community domain expertise is driving regular refinements. In a sustained community effort, this consortium is integrating data and expertise across virology, immunology, mathematical biology, quantitative systems physiology, cloud and high performance computing, and other domains to accelerate our response to this critical threat to international health. More broadly, this effort is creating a reusable, modular framework for studying viral replication and immune response in tissues, which can also potentially be adapted to related problems in immunology and immunotherapy.

20.
AIDS ; 33(12): 1911-1922, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31490212

RESUMEN

OBJECTIVE(S): 'Getting to Zero' (GTZ) initiatives aim to eliminate new HIV infections over a projected time frame. Increased preexposure prophylaxis (PrEP) uptake among populations with the highest HIV incidence, such as young Black MSM, is necessary to accomplish this aim. Agent-based network models (ABNMs) can help guide policymakers on strategies to increase PrEP uptake. DESIGN: Effective PrEP implementation requires a model that incorporates the dynamics of interventions and dynamic feedbacks across multiple levels including virus, host, behavior, networks, and population. ABNMs are a powerful tool to incorporate these processes. METHODS: An ABNM, designed for and parameterized using data for young Black MSM in Illinois, was used to compare the impact of PrEP initiation and retention interventions on HIV incidence after 10 years, consistent with GTZ timelines. Initiation interventions selected individuals in serodiscordant partnerships, or in critical sexual network positions, and compared with a controlled setting where PrEP initiators were randomly selected. Retention interventions increased the mean duration of PrEP use. A combination intervention modeled concurrent increases in PrEP initiation and retention. RESULTS: Selecting HIV-negative individuals for PrEP initiation in serodiscordant partnerships resulted in the largest HIV incidence declines, relative to other interventions. For a given PrEP uptake level, distributing effort between increasing PrEP initiation and retention in combination was approximately as effective as increasing only one exclusively. CONCLUSION: Simulation results indicate that expanded PrEP interventions alone may not accomplish GTZ goals within a decade, and integrated scale-up of PrEP, antiretroviral therapy, and other interventions might be necessary.


Asunto(s)
Transmisión de Enfermedad Infecciosa/prevención & control , Infecciones por VIH/prevención & control , Infecciones por VIH/transmisión , Cooperación del Paciente/estadística & datos numéricos , Profilaxis Pre-Exposición/métodos , Profilaxis Pre-Exposición/estadística & datos numéricos , Adolescente , Adulto , Población Negra , Humanos , Illinois , Incidencia , Masculino , Modelos Estadísticos , Minorías Sexuales y de Género , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...