Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 526, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36720870

RESUMEN

In Archaea and Eukaryotes, the synthesis of a universal tRNA modification, N6-threonyl-carbamoyl adenosine (t6A), is catalyzed by the KEOPS complex composed of Kae1, Bud32, Cgi121, and Pcc1. A fifth subunit, Gon7, is found only in Fungi and Metazoa. Here, we identify and characterize a fifth KEOPS subunit in Archaea. This protein, dubbed Pcc2, is a paralog of Pcc1 and is widely conserved in Archaea. Pcc1 and Pcc2 form a heterodimer in solution, and show modest sequence conservation but very high structural similarity. The five-subunit archaeal KEOPS does not form dimers but retains robust tRNA binding and t6A synthetic activity. Pcc2 can substitute for Pcc1 but the resulting KEOPS complex is inactive, suggesting a distinct function for the two paralogs. Comparative sequence and structure analyses point to a possible evolutionary link between archaeal Pcc2 and eukaryotic Gon7. Our work indicates that Pcc2 regulates the oligomeric state of the KEOPS complex, a feature that seems to be conserved from Archaea to Eukaryotes.


Asunto(s)
Adenosina , Archaea , Archaea/genética , Evolución Biológica , Eucariontes , ARN de Transferencia/genética
2.
Nucleic Acids Res ; 49(4): 2141-2160, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33524148

RESUMEN

The tRNA modification N6-threonylcarbamoyladenosine (t6A) is universally conserved in all organisms. In bacteria, the biosynthesis of t6A requires four proteins (TsaBCDE) that catalyze the formation of t6A via the unstable intermediate l-threonylcarbamoyl-adenylate (TC-AMP). While the formation and stability of this intermediate has been studied in detail, the mechanism of its transfer to A37 in tRNA is poorly understood. To investigate this step, the structure of the TsaBD heterodimer from Escherichia coli has been solved bound to a stable phosphonate isosteric mimic of TC-AMP. The phosphonate inhibits t6A synthesis in vitro with an IC50 value of 1.3 µM in the presence of millimolar ATP and L-threonine. The inhibitor binds to TsaBD by coordination to the active site Zn atom via an oxygen atom from both the phosphonate and the carboxylate moieties. The bound conformation of the inhibitor suggests that the catalysis exploits a putative oxyanion hole created by a conserved active site loop of TsaD and that the metal essentially serves as a binding scaffold for the intermediate. The phosphonate bound crystal structure should be useful for the rational design of potent, drug-like small molecule inhibitors as mechanistic probes or potentially novel antibiotics.


Asunto(s)
Adenosina/análogos & derivados , Proteínas de Escherichia coli/química , ARN de Transferencia/metabolismo , Adenosina/biosíntesis , Adenosina/química , Dominio Catalítico , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Organofosfonatos/química , Organofosfonatos/farmacología , Multimerización de Proteína , ARN de Transferencia/química
3.
Nat Commun ; 10(1): 3967, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481669

RESUMEN

N6-threonyl-carbamoylation of adenosine 37 of ANN-type tRNAs (t6A) is a universal modification essential for translational accuracy and efficiency. The t6A pathway uses two sequentially acting enzymes, YRDC and OSGEP, the latter being a subunit of the multiprotein KEOPS complex. We recently identified mutations in genes encoding four out of the five KEOPS subunits in children with Galloway-Mowat syndrome (GAMOS), a clinically heterogeneous autosomal recessive disease characterized by early-onset steroid-resistant nephrotic syndrome and microcephaly. Here we show that mutations in YRDC cause an extremely severe form of GAMOS whereas mutations in GON7, encoding the fifth KEOPS subunit, lead to a milder form of the disease. The crystal structure of the GON7/LAGE3/OSGEP subcomplex shows that the intrinsically disordered GON7 protein becomes partially structured upon binding to LAGE3. The structure and cellular characterization of GON7 suggest its involvement in the cellular stability and quaternary arrangement of the KEOPS complex.


Asunto(s)
Adenosina/análogos & derivados , Proteínas de Unión al GTP/genética , Hernia Hiatal/genética , Proteínas Intrínsecamente Desordenadas/genética , Microcefalia/genética , Nefrosis/genética , Proteínas Nucleares/genética , ARN de Transferencia/genética , Proteínas de Unión al ARN/genética , Adenosina/genética , Niño , Femenino , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Masculino , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo
5.
Nucleic Acids Res ; 46(11): 5850-5860, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29741707

RESUMEN

The universal N6-threonylcarbamoyladenosine (t6A) modification at position A37 of ANN-decoding tRNAs is essential for translational fidelity. In bacteria the TsaC enzyme first synthesizes an l-threonylcarbamoyladenylate (TC-AMP) intermediate. In cooperation with TsaB and TsaE, TsaD then transfers the l-threonylcarbamoyl-moiety from TC-AMP onto tRNA. We determined the crystal structure of the TsaB-TsaE-TsaD (TsaBDE) complex of Thermotoga maritima in presence of a non-hydrolysable AMPCPP. TsaE is positioned at the entrance of the active site pocket of TsaD, contacting both the TsaB and TsaD subunits and prohibiting simultaneous tRNA binding. AMPCPP occupies the ATP binding site of TsaE and is sandwiched between TsaE and TsaD. Unexpectedly, the binding of TsaE partially denatures the active site of TsaD causing loss of its essential metal binding sites. TsaE interferes in a pre- or post-catalytic step and its binding to TsaBD is regulated by ATP hydrolysis. This novel binding mode and activation mechanism of TsaE offers good opportunities for antimicrobial drug development.


Asunto(s)
Adenosina/análogos & derivados , Proteínas Bacterianas/química , ARN de Transferencia/metabolismo , Thermotoga maritima/enzimología , Adenosina/biosíntesis , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Proteínas Arqueales/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Enzimas/química , Enzimas/metabolismo , Modelos Moleculares , Conformación Proteica , Estructura Cuaternaria de Proteína , ARN de Transferencia/química
6.
RNA ; 24(7): 926-938, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29650678

RESUMEN

N6-threonyl-carbamoyl adenosine (t6A) is a universal tRNA modification found at position 37, next to the anticodon, in almost all tRNAs decoding ANN codons (where N = A, U, G, or C). t6A stabilizes the codon-anticodon interaction and hence promotes translation fidelity. The first step of the biosynthesis of t6A, the production of threonyl-carbamoyl adenylate (TC-AMP), is catalyzed by the Sua5/TsaC family of enzymes. While TsaC is a single domain protein, Sua5 enzymes are composed of the TsaC-like domain, a linker and an extra domain called SUA5 of unknown function. In the present study, we report structure-function analysis of Pyrococcus abyssi Sua5 (Pa-Sua5). Crystallographic data revealed binding sites for bicarbonate substrate and pyrophosphate product. The linker of Pa-Sua5 forms a loop structure that folds into the active site gorge and closes it. Using structure-guided mutational analysis, we established that the conserved sequence motifs in the linker and the domain-domain interface are essential for the function of Pa-Sua5. We propose that the linker participates actively in the biosynthesis of TC-AMP by binding to ATP/PPi and by stabilizing the N-carboxy-l-threonine intermediate. Hence, TsaC orthologs which lack such a linker and SUA5 domain use a different mechanism for TC-AMP synthesis.


Asunto(s)
Adenosina/análogos & derivados , Proteínas Arqueales/química , Pyrococcus abyssi/enzimología , ARN de Transferencia/metabolismo , Adenosina/biosíntesis , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Modelos Moleculares , Mutación , Conformación Proteica , Dominios Proteicos , ARN de Transferencia/química , Relación Estructura-Actividad
7.
Nat Genet ; 49(10): 1529-1538, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28805828

RESUMEN

Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.


Asunto(s)
Hernia Hiatal/genética , Microcefalia/genética , Complejos Multiproteicos/genética , Mutación , Nefrosis/genética , Animales , Apoptosis/genética , Sistemas CRISPR-Cas , Proteínas Portadoras/genética , Movimiento Celular , Citoesqueleto/ultraestructura , Reparación del ADN/genética , Estrés del Retículo Endoplásmico/genética , Técnicas de Inactivación de Genes , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Metaloendopeptidasas/deficiencia , Metaloendopeptidasas/genética , Ratones , Modelos Moleculares , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología , Podocitos/metabolismo , Podocitos/ultraestructura , Conformación Proteica , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia/metabolismo , Homeostasis del Telómero/genética , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
8.
Nucleic Acids Res ; 43(6): 3358-72, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25735745

RESUMEN

The yeast KEOPS protein complex comprising Kae1, Bud32, Cgi121, Pcc1 and Gon7 is responsible for the essential tRNA threonylcarbamoyladenosine (t(6)A) modification. Deletion of genes coding for the KEOPS subunits also affects telomere elongation and transcriptional regulation. In the present work, the crystal structure of Bud32/Cgi121 in complex with ADP revealed that ADP is bound in the catalytic site of Bud32 in a canonical manner characteristic of Protein Kinase A (PKA) family proteins. We found that Gon7 forms a stable heterodimer with Pcc1 and report the crystal structure of the Pcc1-Gon7 heterodimer. Gon7 interacts with the same Pcc1 region engaged in the archaeal Pcc1 homodimer. We further show that yeast KEOPS, unlike its archaeal counterpart, exists as a heteropentamer in which Gon7, Pcc1, Kae1, Bud32 and Cgi121 also adopt a linear arrangement. We constructed a model of yeast KEOPS that provides structural insight into the role of Gon7. The model also revealed the presence of a highly positively charged crater surrounding the entrance of Kae1 that likely binds tRNA.


Asunto(s)
Proteínas Serina-Treonina Quinasas/química , Proteínas de Saccharomyces cerevisiae/química , Factores de Transcripción/química , Adenosina Difosfato/química , Secuencia de Aminoácidos , Proteínas Arqueales/química , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Difracción de Rayos X
9.
Nucleic Acids Res ; 43(3): 1804-17, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25578970

RESUMEN

The essential and universal N(6)-threonylcarbamoyladenosine (t(6)A) modification at position 37 of ANN-decoding tRNAs plays a pivotal role in translational fidelity through enhancement of the cognate codon recognition and stabilization of the codon-anticodon interaction. In Escherichia coli, the YgjD (TsaD), YeaZ (TsaB), YjeE (TsaE) and YrdC (TsaC) proteins are necessary and sufficient for the in vitro biosynthesis of t(6)A, using tRNA, ATP, L-threonine and bicarbonate as substrates. YrdC synthesizes the short-lived L-threonylcarbamoyladenylate (TCA), and YgjD, YeaZ and YjeE cooperate to transfer the L-threonylcarbamoyl-moiety from TCA onto adenosine at position 37 of substrate tRNA. We determined the crystal structure of the heterodimer YgjD-YeaZ at 2.3 Å, revealing the presence of an unexpected molecule of ADP bound at an atypical site situated at the YgjD-YeaZ interface. We further showed that the ATPase activity of YjeE is strongly activated by the YgjD-YeaZ heterodimer. We established by binding experiments and SAXS data analysis that YgjD-YeaZ and YjeE form a compact ternary complex only in presence of ATP. The formation of the ternary YgjD-YeaZ-YjeE complex is required for the in vitro biosynthesis of t(6)A but not its ATPase activity.


Asunto(s)
Adenosina Trifosfato/fisiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , ARN Bacteriano/biosíntesis , ARN de Transferencia/biosíntesis , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Dimerización , Electroforesis en Gel de Agar , Proteínas de Escherichia coli/química , Modelos Moleculares , Conformación Proteica , ARN Bacteriano/metabolismo
10.
Nucleic Acids Res ; 42(11): 7395-408, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24782530

RESUMEN

Natural transformation is a major mechanism of horizontal gene transfer in bacteria that depends on DNA recombination. RecA is central to the homologous recombination pathway, catalyzing DNA strand invasion and homology search. DprA was shown to be a key binding partner of RecA acting as a specific mediator for its loading on the incoming exogenous ssDNA. Although the 3D structures of both RecA and DprA have been solved, the mechanisms underlying their cross-talk remained elusive. By combining molecular docking simulations and experimental validation, we identified a region on RecA, buried at its self-assembly interface and involving three basic residues that contact an acidic triad of DprA previously shown to be crucial for the interaction. At the core of these patches, (DprA)M238 and (RecA)F230 are involved in the interaction. The other DprA binding regions of RecA could involve the N-terminal α-helix and a DNA-binding region. Our data favor a model of DprA acting as a cap of the RecA filament, involving a DprA-RecA interplay at two levels: their own oligomeric states and their respective interaction with DNA. Our model forms the basis for a mechanistic explanation of how DprA can act as a mediator for the loading of RecA on ssDNA.


Asunto(s)
Proteínas Bacterianas/química , ADN de Cadena Simple/metabolismo , Proteínas de la Membrana/química , Rec A Recombinasas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Evolución Molecular , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Rec A Recombinasas/metabolismo , Streptococcus pneumoniae
11.
Nucleic Acids Res ; 41(3): 1953-64, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23258706

RESUMEN

N(6)-threonylcarbamoyladenosine (t(6)A) is a modified nucleotide found in all transfer RNAs (tRNAs) decoding codons starting with adenosine. Its role is to facilitate codon-anticodon pairing and to prevent frameshifting during protein synthesis. Genetic studies demonstrated that two universal proteins, Kae1/YgjD and Sua5/YrdC, are necessary for t(6)A synthesis in Saccharomyces cerevisiae and Escherichia coli. In Archaea and Eukarya, Kae1 is part of a conserved protein complex named kinase, endopeptidase and other proteins of small size (KEOPS), together with three proteins that have no bacterial homologues. Here, we reconstituted for the first time an in vitro system for t(6)A modification in Archaea and Eukarya, using purified KEOPS and Sua5. We demonstrated binding of tRNAs to archaeal KEOPS and detected two distinct adenosine triphosphate (ATP)-dependent steps occurring in the course of the synthesis. Our data, together with recent reconstitution of an in vitro bacterial system, indicated that t(6)A cannot be catalysed by Sua5/YrdC and Kae1/YgjD alone but requires accessory proteins that are not universal. Remarkably, we observed interdomain complementation when bacterial, archaeal and eukaryotic proteins were combined in vitro, suggesting a conserved catalytic mechanism for the biosynthesis of t(6)A in nature. These findings shed light on the reaction mechanism of t(6)A synthesis and evolution of molecular systems that promote translation fidelity in present-day cells.


Asunto(s)
Adenosina/análogos & derivados , Proteínas Arqueales/metabolismo , Pyrococcus abyssi/enzimología , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/metabolismo , Adenosina/química , Adenosina/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Biocatálisis , Proteínas de Unión al ADN/metabolismo , Endopeptidasas/metabolismo , Proteínas Quinasas/metabolismo , ARN de Transferencia/química , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Protein Sci ; 18(4): 845-9, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19319936

RESUMEN

Viruses infecting hyperthermophilic archaea have intriguing morphologies and genomic properties. The vast majority of their genes do not have homologs other than in other hyperthermophilic viruses, and the biology of these viruses is poorly understood. As part of a structural genomics project on the proteins of these viruses, we present here the structure of a 102 amino acid protein from acidianus filamentous virus 1 (AFV1-102). The structure shows that it is made of two identical motifs that have poor sequence similarity. Although no function can be proposed from structural analysis, tight binding of the gateway tag peptide in a groove between the two motifs suggests AFV1-102 is involved in protein protein interactions.


Asunto(s)
Acidianus/virología , Cristalografía por Rayos X , Lipothrixviridae/química , Proteínas Virales/química , Lipothrixviridae/metabolismo , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Proteínas Virales/metabolismo
13.
EMBO J ; 27(17): 2340-51, 2008 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-19172740

RESUMEN

The EKC/KEOPS yeast complex is involved in telomere maintenance and transcription. The Bud32p and kinase-associated endopeptidase 1 (Kaelp) components of the complex are totally conserved in eukarya and archaea. Their genes are fused in several archaeal genomes, suggesting that they physically interact. We report here the structure of the Methanocaldococcus jannaschii Kae1/Bud32 fusion protein MJ1130. Kae1 is an iron protein with an ASKHA fold and Bud32 is an atypical small RIO-type kinase. The structure MJ1130 suggests that association with Kae1 maintains the Bud32 kinase in an inactive state. We indeed show that yeast Kae1p represses the kinase activity of yeast Bud32p. Extensive conserved interactions between MjKae1 and MjBud32 suggest that Kae1p and Bud32p directly interact in both yeast and archaea. Mutations that disrupt the Kae1p/Bud32p interaction in the context of the yeast complex have dramatic effects in vivo and in vitro, similar to those observed with deletion mutations of the respective components. Direct interaction between Kae1p and Bud32p in yeast is required both for the transcription and the telomere homeostasis function of EKC/KEOPS.


Asunto(s)
Proteínas Arqueales/química , Metaloendopeptidasas/química , Proteínas Quinasas/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Secuencia de Bases , Cristalografía por Rayos X , Cartilla de ADN/genética , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Methanococcales/genética , Methanococcales/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad de la Especie , Telómero/metabolismo , Transcripción Genética
14.
Methods Mol Biol ; 363: 21-37, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17272835

RESUMEN

The South-Paris Yeast Structural Genomics Pilot Project (http://www.genomics.eu.org) aims at systematically expressing, purifying, and determining the three-dimensional structures of Saccharomyces cerevisiae proteins. We have already cloned 240 yeast open reading frames in the Escherichia coli pET system. Eighty-two percent of the targets can be expressed in E. coli, and 61% yield soluble protein. We have currently purified 58 proteins. Twelve X-ray structures have been solved, six are in progress, and six other proteins gave crystals. In this chapter, we present the general experimental flowchart applied for this project. One of the main difficulties encountered in this pilot project was the low solubility of a great number of target proteins. We have developed parallel strategies to recover these proteins from inclusion bodies, including refolding, coexpression with chaperones, and an in vitro expression system. A limited proteolysis protocol, developed to localize flexible regions in proteins that could hinder crystallization, is also described.


Asunto(s)
Proteínas/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Biología Computacional , Cristalización , Genómica , Péptido Hidrolasas/metabolismo , Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Biopolymers ; 88(2): 164-73, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17236209

RESUMEN

HIV-1 protease (HIV-1 PR), which is encoded by retroviruses, is required for the processing of gag and pol polyprotein precursors, hence it is essential for the production of infectious viral particles. In vitro inhibition of the enzyme results in the production of progeny virions that are immature and noninfectious, suggesting its potential as a therapeutic target for AIDS. Although a number of potent protease inhibitor drugs are now available, the onset of resistance to these agents due to mutations in HIV-1 PR has created an urgent need for new means of HIV-1 PR inhibition. Whereas enzymes are usually inactivated by blocking of the active site, the structure of dimeric HIV-1 PR allows an alternative inhibitory mechanism. Since the active site is formed by two half-enzymes, which are connected by a four-stranded antiparallel beta-sheet involving the N- and C- termini of both monomers, enzyme activity can be abolished by reagents targeting the dimer interface in a region relatively free of mutations would interfere with formation or stability of the functional HIV-1 PR dimer. This strategy has been explored by several groups who targeted the four-stranded antiparallel beta-sheet that contributes close to 75% of the dimerization energy. Interface peptides corresponding to native monomer N- or C-termini of several of their mimetics demonstrated, mainly on the basis of kinetic analyses, to act as dimerization inhibitors. However, to the best of our knowledge, neither X-ray crystallography nor NMR structural studies of the enzyme-inhibitor complex have been performed to date. In this article we report a structural study of the dimerization inhibition of HIV-1 PR by NMR using selective Trp side chain labeling.


Asunto(s)
Inhibidores de la Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/farmacología , Proteasa del VIH/química , Oligopéptidos/química , Oligopéptidos/farmacología , Isótopos de Carbono , Dimerización , Proteasa del VIH/genética , Inhibidores de la Proteasa del VIH/síntesis química , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Oligopéptidos/síntesis química , Estructura Cuaternaria de Proteína/efectos de los fármacos , Triptófano/química
16.
J Med Chem ; 49(15): 4657-64, 2006 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-16854071

RESUMEN

We have designed, synthesized, and evaluated the inhibitory activity and metabolic stability of new peptidomimetic molecular tongs based on a naphthalene scaffold for inhibiting HIV-1 protease dimerization. Peptidomimetic motifs were inserted into one peptidic strand to make it resistant to proteolysis. The peptidic character of the molecular tongs can be decreased without changing the way they inhibit dimerization. Mutated HIV-1 proteases are also vulnerable to dimerization inhibitors, and the multimutated protease ANAM-11 is twice as sensitive to the inhibitor compared to wild-type protease. Thus, the metabolic stability of antidimeric molecular tongs can be increased without compromising their ability to inhibit wild-type and mutated HIV-1 proteases in vitro.


Asunto(s)
Aminoácidos/química , Inhibidores de la Proteasa del VIH/química , Proteasa del VIH/química , Dimerización , Estabilidad de Medicamentos , Proteasa del VIH/síntesis química , Proteasa del VIH/genética , Inhibidores de la Proteasa del VIH/síntesis química , Hidrólisis , Modelos Moleculares , Conformación Molecular , Imitación Molecular , Mutación , Naftalenos/síntesis química , Naftalenos/química , Péptidos/química , Piridinas/síntesis química , Piridinas/química
17.
FEBS J ; 272(24): 6254-65, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16336263

RESUMEN

Anti-poxvirus therapies are currently limited to cidofovir [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine], but drug-resistant strains have already been characterized. In the aim of finding a new target, the thymidylate (TMP) kinase from vaccinia virus, the prototype of Orthopoxvirus, has been overexpressed in Escherichia coli after cloning the gene (A48R). Specific inhibitors and alternative substrates of pox TMP kinase should contribute to virus replication inhibition. Biochemical characterization of the enzyme revealed distinct catalytic features when compared to its human counterpart. Sharing 42% identity with human TMP kinase, the vaccinia virus enzyme was assumed to adopt the common fold of nucleoside monophosphate kinases. The enzyme was purified to homogeneity and behaves as a homodimer, like all known TMP kinases. Initial velocity studies showed that the Km for ATP-Mg2+ and dTMP were 0.15 mm and 20 microM, respectively. Vaccinia virus TMP kinase was found to phosphorylate dTMP, dUMP and also dGMP from any purine and pyrimidine nucleoside triphosphate. 5-Halogenated dUMP such as 5-iodo-2'-deoxyuridine 5'-monophosphate (5I-dUMP) and 5-bromo-2'-deoxyuridine 5'-monophosphate (5Br-dUMP) were also efficient alternative substrates. Using thymidine-5'-(4-N'-methylanthraniloyl-aminobutyl)phosphoramidate as a fluorescent probe of the dTMP binding site, we detected an ADP-induced conformational change enhancing the binding affinity of dTMP and analogues. Several thymidine and dTMP derivatives were found to bind the enzyme with micromolar affinities. The present study provides the basis for the design of specific inhibitors or substrates for poxvirus TMP kinase.


Asunto(s)
Nucleósido-Fosfato Quinasa/metabolismo , Virus Vaccinia/enzimología , Secuencia de Aminoácidos , Unión Competitiva , Clonación Molecular/métodos , Desoxirribonucleótidos/metabolismo , Desoxirribonucleótidos/farmacología , Inhibidores Enzimáticos/farmacología , Cinética , Conformación Proteica/efectos de los fármacos , Alineación de Secuencia , Especificidad por Sustrato , Replicación Viral/efectos de los fármacos
18.
J Biol Chem ; 280(15): 14780-9, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15699035

RESUMEN

The transcriptional antiterminator protein LicT regulates the expression of Bacillus subtilis operons involved in beta-glucoside metabolism. It consists of an N-terminal RNA-binding domain (co-antiterminator (CAT)) and two phosphorylatable phosphotransferase system regulation domains (PRD1 and PRD2). In the activated state, each PRD forms a dimeric unit with the phosphorylation sites totally buried at the dimer interface. Here we present the 1.95 A resolution structure of the inactive LicT PRDs as well as the molecular solution structure of the full-length protein deduced from small angle x-ray scattering. Comparison of native (inactive) and mutant (constitutively active) PRD crystal structures shows massive tertiary and quaternary rearrangements of the entire regulatory domain. In the inactive state, a wide swing movement of PRD2 results in dimer opening and brings the phosphorylation sites to the protein surface. This movement is accompanied by additional structural rearrangements of both the PRD1-PRD1 ' interface and the CAT-PRD1 linker. Small angle x-ray scattering experiments indicate that the amplitude of the PRD2 swing might even be wider in solution than in the crystals. Our results suggest that PRD2 is highly mobile in the native protein, whereas it is locked upon activation by phosphorylation.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/fisiología , Factores de Transcripción/fisiología , Transcripción Genética , Proteínas Bacterianas/química , Cristalografía por Rayos X , Dimerización , Modelos Biológicos , Modelos Moleculares , Mutación , Fosforilación , Conformación Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Dispersión de Radiación , Factores de Transcripción/química , Rayos X
19.
Protein Sci ; 14(1): 209-15, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15608122

RESUMEN

We determined the three-dimensional crystal structure of the protein YML079wp, encoded by a hypothetical open reading frame from Saccharomyces cerevisiae to a resolution of 1.75 A. The protein has no close homologs and its molecular and cellular functions are unknown. The structure of the protein is a jelly-roll fold consisting of ten beta-strands organized in two parallel packed beta-sheets. The protein has strong structural resemblance to the plant storage and ligand binding proteins (canavalin, glycinin, auxin binding protein) but also to some plant and bacterial enzymes (epimerase, germin). The protein forms homodimers in the crystal, confirming measurements of its molecular mass in solution. Two monomers have their beta-sheet packed together to form the dimer. The presence of a hydrophobic ligand in a well conserved pocket inside the barrel and local sequence similarity with bacterial epimerases may suggest a biochemical function for this protein.


Asunto(s)
Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido
20.
Biochimie ; 86(9-10): 617-23, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15556271

RESUMEN

We present here the outlines and results from our yeast structural genomics (YSG) pilot-project. A lab-scale platform for the systematic production and structure determination is presented. In order to validate this approach, 250 non-membrane proteins of unknown structure were targeted. Strategies and final statistics are evaluated. We finally discuss the opportunity of structural genomics programs to contribute to functional biochemical annotation.


Asunto(s)
Genómica , Saccharomyces cerevisiae/genética , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...