Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746377

RESUMEN

Background and Objective: Prostate cancer (PCa) is a leading cause of cancer mortality in men, with neuroendocrine prostate cancer (NEPC) representing a particularly resistant subtype. The role of transcription factors (TFs) in the progression from prostatic adenocarcinoma (PRAD) to NEPC is poorly understood. This study aims to identify and analyze lineage-specific TF profiles in PRAD and NEPC and illustrate their dynamic shifts during NE transdifferentiation. Methods: A novel algorithmic approach was developed to evaluate the weighted expression of TFs within patient samples, enabling a nuanced understanding of TF landscapes in PCa progression and TF dynamic shifts during NE transdifferentiation. Results: unveiled TF profiles for PRAD and NEPC, identifying 126 shared TFs, 46 adenocarcinoma-TFs, and 56 NEPC-TFs. Enrichment analysis across multiple clinical cohorts confirmed the lineage specificity and clinical relevance of these lineage-TFs signatures. Functional analysis revealed that lineage-TFs are implicated in pathways critical to cell development, differentiation, and lineage determination. Novel lineage-TF candidates were identified, offering potential targets for therapeutic intervention. Furthermore, our longitudinal study on NE transdifferentiation highlighted dynamic TF expression shifts and delineated a three-phase hypothesis for the process comprised of de-differentiation, dormancy, and re-differentiation. and proposing novel insights into the mechanisms of PCa progression. Conclusion: The lineage-specific TF profiles in PRAD and NEPC reveal a dynamic shift in the TF landscape during PCa progression, highlighting three distinct phases of NE transdifferentiation.

2.
Bioinformatics ; 40(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38390963

RESUMEN

MOTIVATION: A patient's disease phenotype can be driven and determined by specific groups of cells whose marker genes are either unknown or can only be detected at late-stage using conventional bulk assays such as RNA-Seq technology. Recent advances in single-cell RNA sequencing (scRNA-seq) enable gene expression profiling in cell-level resolution, and therefore have the potential to identify those cells driving the disease phenotype even while the number of these cells is small. However, most existing methods rely heavily on accurate cell type detection, and the number of available annotated samples is usually too small for training deep learning predictive models. RESULTS: Here, we propose the method ScRAT for phenotype prediction using scRNA-seq data. To train ScRAT with a limited number of samples of different phenotypes, such as coronavirus disease (COVID) and non-COVID, ScRAT first applies a mixup module to increase the number of training samples. A multi-head attention mechanism is employed to learn the most informative cells for each phenotype without relying on a given cell type annotation. Using three public COVID datasets, we show that ScRAT outperforms other phenotype prediction methods. The performance edge of ScRAT over its competitors increases as the number of training samples decreases, indicating the efficacy of our sample mixup. Critical cell types detected based on high-attention cells also support novel findings in the original papers and the recent literature. This suggests that ScRAT overcomes the challenge of missing marker genes and limited sample number with great potential revealing novel molecular mechanisms and/or therapies. AVAILABILITY AND IMPLEMENTATION: The code of our proposed method ScRAT is published at https://github.com/yuzhenmao/ScRAT.


Asunto(s)
Análisis de la Célula Individual , Análisis de Expresión Génica de una Sola Célula , Humanos , Análisis de la Célula Individual/métodos , RNA-Seq , Perfilación de la Expresión Génica , Redes Neurales de la Computación , Fenotipo , Análisis de Secuencia de ARN , Análisis por Conglomerados
3.
Commun Biol ; 7(1): 12, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172434

RESUMEN

Type 2 innate lymphoid cells (ILC2s) perform vital functions in orchestrating humoral immune responses, facilitating tissue remodelling, and ensuring tissue homeostasis. Additionally, in a role that has garnered considerably less attention, ILC2s can also enhance Th1-related cytolytic T lymphocyte immune responses against tumours. Studies have thus far generally failed to address the mystery of how one ILC2 cell-type can participate in a multiplicity of functions. Here we utilized single cell RNA sequencing analysis to create the first comprehensive atlas of naïve and tumour-associated lung ILC2s and discover multiple unique subtypes of ILC2s equipped with developmental gene programs that become skewed during tumour expansion favouring inflammation, antigen processing, immunological memory and Th1-related anti-tumour CTL responses. The discovery of these new subtypes of ILC2s challenges current paradigms of ILC2 biology and provides an explanation for their diversity of function.


Asunto(s)
Inmunidad Innata , Neoplasias , Humanos , Linfocitos , Pulmón/patología , Inflamación/patología , Neoplasias/genética , Neoplasias/patología
4.
Mol Cancer Res ; 22(1): 41-54, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37831068

RESUMEN

RNF185 is a RING finger domain-containing ubiquitin ligase implicated in ER-associated degradation. Prostate tumor patient data analysis revealed a negative correlation between RNF185 expression and prostate cancer progression and metastasis. Likewise, several prostate cancer cell lines exhibited greater migration and invasion capabilities in culture upon RNF185 depletion. Subcutaneous inoculation of mouse prostate cancer MPC3 cells stably expressing short hairpin RNA against RNF185 into mice resulted in larger tumors and more frequent lung metastases. RNA-sequencing and Ingenuity Pathway Analysis identified wound-healing and cellular movement among the most significant pathways upregulated in RNF185-depleted lines, compared with control prostate cancer cells. Gene Set Enrichment Analyses performed in samples from patients harboring low RNF185 expression and in RNF185-depleted lines confirmed the deregulation of genes implicated in epithelial-to-mesenchymal transition. Among those, COL3A1 was identified as the primary mediator of RNF185's ability to impact migration phenotypes. Correspondingly, enhanced migration and metastasis of RNF185 knockdown (KD) prostate cancer cells were attenuated upon co-inhibition of COL3A1. Our results identify RNF185 as a gatekeeper of prostate cancer metastasis, partly via its control of COL3A1 availability. IMPLICATIONS: RNF185 is identified as an important regulator of prostate cancer migration and metastasis, in part due to its regulation of COL3A1. Both RNF185 and COL3A1 may serve as novel markers for prostate tumors.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Ratones , Animales , Neoplasias de la Próstata/patología , Próstata/patología , Movimiento Celular/genética , Transición Epitelial-Mesenquimal , ARN Interferente Pequeño , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Proteínas Mitocondriales/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
Gynecol Oncol ; 176: 162-172, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556934

RESUMEN

OBJECTIVE: Dedifferentiated endometrial cancer (DDEC) is an uncommon and clinically highly aggressive subtype of endometrial cancer characterized by genomic inactivation of SWItch/Sucrose Non-Fermentable (SWI/SNF) complex protein. It responds poorly to conventional systemic treatment and its rapidly progressive clinical course limits the therapeutic windows to trial additional lines of therapies. This underscores a pressing need for biologically accurate preclinical tumor models to accelerate therapeutic development. METHODS: DDEC tumor from surgical samples were implanted into immunocompromised mice for patient-derived xenograft (PDX) and cell line development. The histologic, immunophenotypic, genetic and epigenetic features of the patient tumors and the established PDX models were characterized. The SMARCA4-deficienct DDEC model was evaluated for its sensitivity toward a KDM6A/B inhibitor (GSK-J4) that was previously reported to be effective therapy for other SMARCA4-deficient cancer types. RESULTS: All three DDEC models exhibited rapid growth in vitro and in vivo, with two PDX models showing spontaneous development of metastases in vivo. The PDX tumors maintained the same undifferentiated histology and immunophenotype, and exhibited identical genomic and methylation profiles as seen in the respective parental tumors, including a mismatch repair (MMR)-deficient DDEC with genomic inactivation of SMARCA4, and two MMR-deficient DDECs with genomic inactivation of both ARID1A and ARID1B. Although the SMARCA4-deficient cell line showed low micromolecular sensitivity to GSK-J4, no significant tumor growth inhibition was observed in the corresponding PDX model. CONCLUSIONS: These established patient tumor-derived models accurately depict DDEC and represent valuable preclinical tools to gain therapeutic insights into this aggressive tumor type.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales , Neoplasias Endometriales , Femenino , Humanos , Animales , Ratones , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Diferenciación Celular , Biomarcadores de Tumor/genética , ADN Helicasas , Proteínas Nucleares/genética , Factores de Transcripción/genética , Proteínas de Unión al ADN/genética
6.
bioRxiv ; 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37425866

RESUMEN

RNF185 is a RING finger domain-containing ubiquitin ligase implicated in ER-associated degradation. Prostate tumor patient data analysis revealed a negative correlation between RNF185 expression and prostate cancer progression and metastasis. Likewise, several prostate cancer cell lines exhibited greater migration and invasion capabilities in culture upon RNF185 depletion. Subcutaneous inoculation of mouse prostate cancer MPC3 cells stably expressing shRNA against RNF185 into mice resulted in larger tumors and more frequent lung metastases. RNA-sequencing and Ingenuity Pathway Analysis identified wound healing and cellular movement among the most significant pathways upregulated in RNF185-depleted, compared to control prostate cancer cells. Gene Set Enrichment Analyses performed in samples from patients harboring low RNF185 expression and in RNF185-depleted lines confirmed the deregulation of genes implicated in EMT. Among those, COL3A1 was identified as the primary mediator of RNF185's ability to impact migration phenotypes. Correspondingly, enhanced migration and metastasis of RNF185 KD prostate cancer cells were attenuated upon co-inhibition of COL3A1. Our results identify RNF185 as a gatekeeper of prostate cancer metastasis, partly via its control of COL3A1 availability.

7.
Cancer Gene Ther ; 30(10): 1382-1389, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37452083

RESUMEN

Androgen deprivation therapy (ADT) is the standard care for advanced prostate cancer (PCa) patients. Unfortunately, although tumors respond well initially, they enter dormancy and eventually progress to fatal/incurable castration-resistant prostate cancer (CRPC). B7-H3 is a promising new target for PCa immunotherapy. CD276 (B7-H3) gene has a presumptive androgen receptor (AR) binding site, suggesting potential AR regulation. However, the relationship between B7-H3 and AR is controversial. Meanwhile, the expression pattern of B7-H3 following ADT and during CRPC progression is largely unknown, but critically important for identifying patients and determining the optimal timing of B7-H3 targeting immunotherapy. In this study, we performed a longitudinal study using our unique PCa patient-derived xenograft (PDX) models and assessed B7-H3 expression during post-ADT disease progression. We further validated our findings at the clinical level in PCa patient samples. We found that B7-H3 expression was negatively regulated by AR during the early phase of ADT treatment, but positively associated with PCa proliferation during the remainder of disease progression. Our findings suggest its use as a biomarker for diagnosis, prognosis, and ADT treatment response, and the potential of combining ADT and B7-H3 targeting immunotherapy for hormone-naïve PCa treatment to prevent fatal CRPC relapse.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Antagonistas de Andrógenos/uso terapéutico , Estudios Longitudinales , Progresión de la Enfermedad , Recurrencia Local de Neoplasia , Receptores Androgénicos/genética , Factores de Transcripción , Hormonas/uso terapéutico , Antígenos B7/genética
8.
Clin Cancer Res ; 29(17): 3541-3553, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37279093

RESUMEN

PURPOSE: Histone deacetylase (HDAC) inhibition has been shown to induce pharmacologic "BRCAness" in cancer cells with proficient DNA repair activity. This provides a rationale for exploring combination treatments with HDAC and PARP inhibition in cancer types that are insensitive to single-agent PARP inhibitors (PARPi). Here, we report the concept and characterization of a novel bifunctional PARPi (kt-3283) with dual activity toward PARP1/2 and HDAC enzymes in Ewing sarcoma cells. EXPERIMENTAL DESIGN: Inhibition of PARP1/2 and HDAC was measured using PARP1/2, HDAC activity, and PAR formation assays. Cytotoxicity was assessed by IncuCyte live cell imaging, CellTiter-Glo, and spheroid assays. Cell-cycle profiles were determined using propidium iodide staining and flow cytometry. DNA damage was examined by γH2AX expression and comet assay. Inhibition of metastatic potential by kt-3283 was evaluated via ex vivo pulmonary metastasis assay (PuMA). RESULTS: Compared with FDA-approved PARP (olaparib) and HDAC (vorinostat) inhibitors, kt-3283 displayed enhanced cytotoxicity in Ewing sarcoma models. The kt-3283-induced cytotoxicity was associated with strong S and G2-M cell-cycle arrest in nanomolar concentration range and elevated DNA damage as assessed by γH2AX tracking and comet assays. In three-dimensional spheroid models of Ewing sarcoma, kt-3283 showed efficacy in lower concentrations than olaparib and vorinostat, and kt-3283 inhibited colonization of Ewing sarcoma cells in the ex vivo PuMA model. CONCLUSIONS: Our data demonstrate the preclinical justification for studying the benefit of dual PARP and HDAC inhibition in the treatment of Ewing sarcoma in a clinical trial and provides proof-of-concept for a bifunctional single-molecule therapeutic strategy.


Asunto(s)
Puma , Sarcoma de Ewing , Animales , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Sarcoma de Ewing/patología , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Vorinostat/uso terapéutico
9.
Nat Commun ; 13(1): 4760, 2022 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-35963852

RESUMEN

Lineage plasticity of prostate cancer is associated with resistance to androgen receptor (AR) pathway inhibition (ARPI) and supported by a reactive tumor microenvironment. Here we show that changes in chondroitin sulfate (CS), a major glycosaminoglycan component of the tumor cell glycocalyx and extracellular matrix, is AR-regulated and promotes the adaptive progression of castration-resistant prostate cancer (CRPC) after ARPI. AR directly represses transcription of the 4-O-sulfotransferase gene CHST11 under basal androgen conditions, maintaining steady-state CS in prostate adenocarcinomas. When AR signaling is inhibited by ARPI or lost during progression to non-AR-driven CRPC as a consequence of lineage plasticity, CHST11 expression is unleashed, leading to elevated 4-O-sulfated chondroitin levels. Inhibition of the tumor cell CS glycocalyx delays CRPC progression, and impairs growth and motility of prostate cancer after ARPI. Thus, a reactive CS glycocalyx supports adaptive survival and treatment resistance after ARPI, representing a therapeutic opportunity in patients with advanced prostate cancer.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Andrógenos , Sulfatos de Condroitina , Glicocálix/metabolismo , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Transducción de Señal , Microambiente Tumoral
10.
iScience ; 25(7): 104576, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35789834

RESUMEN

Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer, with a 10% five-year survival rate. However, little is known about its origin and the mechanisms governing its emergence. Our study characterized ADPC and NEPC in prostate tumors from 7 patients using scRNA-seq. First, we identified two NEPC gene expression signatures representing different phases of trans-differentiation. New marker genes we identified may be used for clinical diagnosis. Second, integrative analyses combining expression and subclonal architecture revealed different paths by which NEPC diverges from the original ADPC, either directly from treatment-naïve tumor cells or from specific intermediate states of treatment-resistance. Third, we inferred a hierarchical transcription factor (TF) network underlying the progression, which involves constitutive regulation by ASCL1, FOXA2, and selective regulation by NKX2-2, POU3F2, and SOX2. Together, these results defined the complex expression profiles and advanced our understanding of the genetic and transcriptomic mechanisms leading to NEPC differentiation.

11.
Curr Protoc ; 2(7): e480, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35816165

RESUMEN

Heart disease is the leading cause of global morbidity and mortality. This is in part because, despite an abundance of animal and in vitro models, it has been a challenge to date to study human heart tissue with sufficient depth and resolution to develop disease-modifying therapies for common cardiac conditions. Single-nucleus RNA sequencing (snRNA-seq) has emerged as a powerful tool capable of analyzing cellular function and signaling in health and disease, and has already contributed to significant advances in areas such as oncology and hematology. Employing snRNA-seq technology on flash-frozen human tissue has the potential to unlock novel disease mechanisms and pathways in any organ. Studying the human heart using snRNA-seq is a key priority for the field of cardiovascular sciences; however, progress to date has been slowed by numerous barriers. One key challenge is the fact that the human heart is very resistant to shearing and stress, making tissue dissociation and nuclear isolation difficult. Here, we describe a tissue dissociation method allowing the efficient and cost-effective isolation of high-quality nuclei from flash-frozen human heart tissue collected in surgical operating rooms. Our protocol addresses the challenge of nuclear isolation from human hearts, enables snRNA-seq of the human heart, and paves the way for an improved understanding of the human heart in health and disease. Ultimately, this will be key to uncovering signaling pathways and networks amenable to therapeutic intervention and the development of novel biomarkers and disease-modifying therapies. © 2022 Wiley Periodicals LLC. Basic Protocol: Human heart tissue dissociation and nuclear isolation for snRNA-seq.


Asunto(s)
Núcleo Celular , Perfilación de la Expresión Génica , Animales , Núcleo Celular/genética , Perfilación de la Expresión Génica/métodos , Corazón , Humanos , ARN Nuclear Pequeño/genética , Análisis de Secuencia de ARN/métodos
12.
Front Cell Dev Biol ; 10: 890419, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602596

RESUMEN

TEAD4 (TEA Domain Transcription Factor 4) is well recognized as the DNA-anchor protein of YAP transcription complex, which is modulated by Hippo, a highly conserved pathway in Metazoa that controls organ size through regulating cell proliferation and apoptosis. To acquire full transcriptional activity, TEAD4 requires co-activator, YAP (Yes-associated protein) or its homolog TAZ (transcriptional coactivator with PDZ-binding motif) the signaling hub that relays the extracellular stimuli to the transcription of target genes. Growing evidence suggests that TEAD4 also exerts its function in a YAP-independent manner through other signal pathways. Although TEAD4 plays an essential role in determining that differentiation fate of the blastocyst, it also promotes tumorigenesis by enhancing metastasis, cancer stemness, and drug resistance. Upregulation of TEAD4 has been reported in several cancers, including colon cancer, gastric cancer, breast cancer, and prostate cancer and serves as a valuable prognostic marker. Recent studies show that TEAD4, but not other members of the TEAD family, engages in regulating mitochondrial dynamics and cell metabolism by modulating the expression of mitochondrial- and nuclear-encoded electron transport chain genes. TEAD4's functions including oncogenic activities are tightly controlled by its subcellular localization. As a predominantly nuclear protein, its cytoplasmic translocation is triggered by several signals, such as osmotic stress, cell confluency, and arginine availability. Intriguingly, TEAD4 is also localized in mitochondria, although the translocation mechanism remains unclear. In this report, we describe the current understanding of TEAD4 as an oncogene, epigenetic regulator and mitochondrial modulator. The contributing mechanisms will be discussed.

13.
Cells ; 11(9)2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35563856

RESUMEN

Androgen deprivation therapy (ADT) is the standard therapy for men with advanced prostate cancer (PCa). PCa often responds to ADT and enters a dormancy period, which can be recognized clinically as a minimal residual disease. However, the majority of these patients will eventually experience a relapse in the form of castration-resistant PCa with poor survival. Therefore, ADT-induced dormancy is a unique time window for treatment that can provide a cure. The study of this well-recognized phase of prostate cancer progression is largely hindered by the scarcity of appropriate clinical tissue and clinically relevant preclinical models. Here, we report the utility of unique and clinically relevant patient-derived xenograft models in the study of the intrinsic immune landscape of dormant PCa. Using data from RNA sequencing, we have reconstructed the immune evasion mechanisms that can be utilized by dormant PCa cells. Since dormant PCa cells need to evade the host immune surveillance for survival, our results provide a framework for further study and for devising immunomodulatory mechanisms that can eliminate dormant PCa cells.


Asunto(s)
Antagonistas de Andrógenos , Neoplasias de la Próstata Resistentes a la Castración , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Humanos , Masculino , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Análisis de Secuencia de ARN/métodos
14.
Mol Cancer Res ; 20(5): 782-793, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35082166

RESUMEN

Treatment-induced tumor dormancy is a state in cancer progression where residual disease is present but remains asymptomatic. Dormant cancer cells are treatment-resistant and responsible for cancer recurrence and metastasis. Prostate cancer treated with androgen-deprivation therapy (ADT) often enters a dormant state. ADT-induced prostate cancer dormancy remains poorly understood due to the challenge in acquiring clinical dormant prostate cancer cells and the lack of representative models. In this study, we aimed to develop clinically relevant models for studying ADT-induced prostate cancer dormancy. Dormant prostate cancer models were established by castrating mice bearing patient-derived xenografts (PDX) of hormonal naïve or sensitive prostate cancer. Dormancy status and tumor relapse were monitored and evaluated. Paired pre- and postcastration (dormant) PDX tissues were subjected to morphologic and transcriptome profiling analyses. As a result, we established eleven ADT-induced dormant prostate cancer models that closely mimicked the clinical courses of ADT-treated prostate cancer. We identified two ADT-induced dormancy subtypes that differed in morphology, gene expression, and relapse rates. We discovered transcriptomic differences in precastration PDXs that predisposed the dormancy response to ADT. We further developed a dormancy subtype-based, predisposed gene signature that was significantly associated with ADT response in hormonal naïve prostate cancer and clinical outcome in castration-resistant prostate cancer treated with ADT or androgen-receptor pathway inhibitors. IMPLICATIONS: We have established highly clinically relevant PDXs of ADT-induced dormant prostate cancer and identified two dormancy subtypes, leading to the development of a novel predicative gene signature that allows robust risk stratification of patients with prostate cancer to ADT or androgen-receptor pathway inhibitors.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Antagonistas de Andrógenos/farmacología , Antagonistas de Receptores Androgénicos , Andrógenos/uso terapéutico , Animales , Humanos , Masculino , Ratones , Recurrencia Local de Neoplasia , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología
15.
Nat Commun ; 12(1): 7349, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34934057

RESUMEN

Neuroendocrine (NE) prostate cancer (NEPC) is a lethal subtype of castration-resistant prostate cancer (PCa) arising either de novo or from transdifferentiated prostate adenocarcinoma following androgen deprivation therapy (ADT). Extensive computational analysis has identified a high degree of association between the long noncoding RNA (lncRNA) H19 and NEPC, with the longest isoform highly expressed in NEPC. H19 regulates PCa lineage plasticity by driving a bidirectional cell identity of NE phenotype (H19 overexpression) or luminal phenotype (H19 knockdown). It contributes to treatment resistance, with the knockdown of H19 re-sensitizing PCa to ADT. It is also essential for the proliferation and invasion of NEPC. H19 levels are negatively regulated by androgen signaling via androgen receptor (AR). When androgen is absent SOX2 levels increase, driving H19 transcription and facilitating transdifferentiation. H19 facilitates the PRC2 complex in regulating methylation changes at H3K27me3/H3K4me3 histone sites of AR-driven and NEPC-related genes. Additionally, this lncRNA induces alterations in genome-wide DNA methylation on CpG sites, further regulating genes associated with the NEPC phenotype. Our clinical data identify H19 as a candidate diagnostic marker and predictive marker of NEPC with elevated H19 levels associated with an increased probability of biochemical recurrence and metastatic disease in patients receiving ADT. Here we report H19 as an early upstream regulator of cell fate, plasticity, and treatment resistance in NEPC that can reverse/transform cells to a treatable form of PCa once therapeutically deactivated.


Asunto(s)
Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/patología , Plasticidad de la Célula/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , ARN Largo no Codificante/metabolismo , Antagonistas de Andrógenos/uso terapéutico , Animales , Benzamidas/farmacología , Benzamidas/uso terapéutico , Biomarcadores de Tumor/metabolismo , Carcinoma Neuroendocrino/diagnóstico , Carcinoma Neuroendocrino/tratamiento farmacológico , Línea Celular Tumoral , Linaje de la Célula/genética , Núcleo Celular/metabolismo , Proliferación Celular/genética , Estudios de Cohortes , Metilación de ADN/genética , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Epigénesis Genética/efectos de los fármacos , Genoma Humano , Histonas/metabolismo , Humanos , Masculino , Clasificación del Tumor , Invasividad Neoplásica , Células Madre Neoplásicas/metabolismo , Nitrilos/farmacología , Nitrilos/uso terapéutico , Organoides/metabolismo , Organoides/patología , Feniltiohidantoína/farmacología , Feniltiohidantoína/uso terapéutico , Filogenia , Complejo Represivo Polycomb 2/metabolismo , Regiones Promotoras Genéticas/genética , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/tratamiento farmacológico , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Largo no Codificante/genética , Receptores Androgénicos/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transcripción Genética/efectos de los fármacos
16.
Cancer Sci ; 112(7): 2781-2791, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33960594

RESUMEN

The prevalence of neuroendocrine prostate cancer (NEPC) arising from adenocarcinoma (AC) upon potent androgen receptor (AR) pathway inhibition is increasing. Deeper understanding of NEPC biology and development of novel therapeutic agents are needed. However, research is hindered by the paucity of research models, especially cell lines developed from NEPC patients. We established a novel NEPC cell line, KUCaP13, from tissue of a patient initially diagnosed with AC which later recurred as NEPC. The cell line has been maintained permanently in vitro under regular cell culture conditions and is amenable to gene engineering with lentivirus. KUCaP13 cells lack the expression of AR and overexpress NEPC-associated genes, including SOX2, EZH2, AURKA, PEG10, POU3F2, ENO2, and FOXA2. Importantly, the cell line maintains the homozygous deletion of CHD1, which was confirmed in the primary AC of the index patient. Loss of heterozygosity of TP53 and PTEN, and an allelic loss of RB1 with a transcriptomic signature compatible with Rb pathway aberration were revealed. Knockdown of PEG10 using shRNA significantly suppressed growth in vivo. Introduction of luciferase allowed serial monitoring of cells implanted orthotopically or in the renal subcapsule. Although H3K27me was reduced by EZH2 inhibition, reversion to AC was not observed. KUCaP13 is the first patient-derived, treatment-related NEPC cell line with triple loss of tumor suppressors critical for NEPC development through lineage plasticity. It could be valuable in research to deepen the understanding of NEPC.


Asunto(s)
Adenocarcinoma/patología , Carcinoma Neuroendocrino/patología , Línea Celular Tumoral/patología , Neoplasias de la Próstata/patología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/secundario , Línea Celular Tumoral/metabolismo , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Ensayos de Selección de Medicamentos Antitumorales , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Eliminación de Gen , Expresión Génica , Genes Relacionados con las Neoplasias , Genes de Retinoblastoma , Genes Supresores de Tumor , Genes p53 , Ingeniería Genética , Xenoinjertos , Homocigoto , Humanos , Cariotipificación , Pérdida de Heterocigocidad , Masculino , Ratones SCID , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Trasplante de Neoplasias , Fosfohidrolasa PTEN/genética , Neoplasias del Pene/genética , Neoplasias del Pene/secundario , Neoplasias de la Próstata/genética , Proteínas de Unión al ARN/genética , Receptores Androgénicos
17.
Genome Biol ; 22(1): 149, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33975627

RESUMEN

BACKGROUND: Androgen receptor (AR) is critical to the initiation, growth, and progression of prostate cancer. Once activated, the AR binds to cis-regulatory enhancer elements on DNA that drive gene expression. Yet, there are 10-100× more binding sites than differentially expressed genes. It is unclear how or if these excess binding sites impact gene transcription. RESULTS: To characterize the regulatory logic of AR-mediated transcription, we generated a locus-specific map of enhancer activity by functionally testing all common clinical AR binding sites with Self-Transcribing Active Regulatory Regions sequencing (STARRseq). Only 7% of AR binding sites displayed androgen-dependent enhancer activity. Instead, the vast majority of AR binding sites were either inactive or constitutively active enhancers. These annotations strongly correlated with enhancer-associated features of both in vitro cell lines and clinical prostate cancer samples. Evaluating the effect of each enhancer class on transcription, we found that AR-regulated enhancers frequently interact with promoters and form central chromosomal loops that are required for transcription. Somatic mutations of these critical AR-regulated enhancers often impact enhancer activity. CONCLUSIONS: Using a functional map of AR enhancer activity, we demonstrated that AR-regulated enhancers act as a regulatory hub that increases interactions with other AR binding sites and gene promoters.


Asunto(s)
Elementos de Facilitación Genéticos , Receptores Androgénicos/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Humanos , Masculino , Anotación de Secuencia Molecular , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Neoplasias de la Próstata/genética , Reproducibilidad de los Resultados
18.
EMBO Mol Med ; 13(5): e13427, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33709547

RESUMEN

Treatment-induced adaptive pathways converge to support androgen receptor (AR) reactivation and emergence of castration-resistant prostate cancer (PCa) after AR pathway inhibition (ARPI). We set out to explore poorly defined acute adaptive responses that orchestrate shifts in energy metabolism after ARPI and identified rapid changes in succinate dehydrogenase (SDH), a TCA cycle enzyme with well-known tumor suppressor activity. We show that AR directly regulates transcription of its catalytic subunits (SDHA, SDHB) via androgen response elements (AREs). ARPI acutely suppresses SDH activity, leading to accumulation of the oncometabolite, succinate. Succinate triggers calcium ions release from intracellular stores, which in turn phospho-activates the AR-cochaperone, Hsp27 via p-CaMKK2/p-AMPK/p-p38 axis to enhance AR protein stabilization and activity. Activation of this pathway was seen in tissue microarray analysis on prostatectomy tissues and patient-derived xenografts. This adaptive response is blocked by co-targeting AR with Hsp27 under both in vitro and in vivo studies, sensitizing PCa cells to ARPI treatments.


Asunto(s)
Antagonistas de Receptores Androgénicos , Neoplasias de la Próstata , Antagonistas de Receptores Androgénicos/farmacología , Línea Celular Tumoral , Humanos , Masculino , Receptores Androgénicos/genética , Ácido Succínico
19.
Prostate Cancer Prostatic Dis ; 24(3): 775-785, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33568749

RESUMEN

BACKGROUND: Androgen deprivation therapy (ADT) remains the leading systemic therapy for locally advanced and metastatic prostate cancers (PCa). While a majority of PCa patients initially respond to ADT, the durability of response is variable and most patients will eventually develop incurable castration-resistant prostate cancer (CRPC). Our research objective is to identify potential early driver genes responsible for CRPC development. METHODS: We have developed a unique panel of hormone-naïve PCa (HNPC) patient-derived xenograft (PDX) models at the Living Tumor Laboratory. The PDXs provide a unique platform for driver gene discovery as they allow for the analysis of differentially expressed genes via transcriptomic profiling at various time points after mouse host castration. In the present study, we focused on genes with expression changes shortly after castration but before CRPC has fully developed. These are likely to be potential early drivers of CRPC development. Such genes were further validated for their clinical relevance using data from PCa patient databases. ZRSR2 was identified as a top gene candidate and selected for further functional studies. RESULTS: ZRSR2 is significantly upregulated in our PDX models during the early phases of CRPC development after mouse host castration and remains consistently high in fully developed CRPC PDX models. Moreover, high ZRSR2 expression is also observed in clinical CRPC samples. Importantly, elevated ZRSR2 in PCa samples is correlated with poor patient treatment outcomes. ZRSR2 knockdown reduced PCa cell proliferation and delayed cell cycle progression at least partially through inhibition of the Cyclin D1 (CCND1) pathway. CONCLUSION: Using our unique HNPC PDX models that develop into CRPC after host castration, we identified ZRSR2 as a potential early driver of CRPC development.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata Resistentes a la Castración/patología , Ribonucleoproteínas/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Ciclo Celular , Movimiento Celular , Proliferación Celular , Humanos , Masculino , Ratones , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Ribonucleoproteínas/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Cancer Res ; 81(7): 1681-1694, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33441310

RESUMEN

Low-grade serous ovarian carcinoma (LGSOC) is a rare tumor subtype with high case fatality rates in patients with metastatic disease. There is a pressing need to develop effective treatments using newly available preclinical models for therapeutic discovery and drug evaluation. Here, we use multiomics integration of whole-exome sequencing, RNA sequencing, and mass spectrometry-based proteomics on 14 LGSOC cell lines to elucidate novel biomarkers and therapeutic vulnerabilities. Comparison of LGSOC cell line data with LGSOC tumor data enabled predictive biomarker identification of MEK inhibitor (MEKi) efficacy, with KRAS mutations found exclusively in MEKi-sensitive cell lines and NRAS mutations found mostly in MEKi-resistant cell lines. Distinct patterns of Catalogue of Somatic Mutations in Cancer mutational signatures were identified in MEKi-sensitive and MEKi-resistant cell lines. Deletions of CDKN2A/B and MTAP genes were more frequent in cell lines than tumor samples and possibly represent key driver events in the absence of KRAS/NRAS/BRAF mutations. These LGSOC cell lines were representative models of the molecular aberrations found in LGSOC tumors. For prediction of in vitro MEKi efficacy, proteomic data provided better discrimination than gene expression data. Condensin, minichromosome maintenance, and replication factor C protein complexes were identified as potential treatment targets in MEKi-resistant cell lines. This study suggests that CDKN2A/B or MTAP deficiency may be exploited using synthetically lethal treatment strategies, highlighting the importance of using proteomic data as a tool for molecular drug prediction. Multiomics approaches are crucial to improving our understanding of the molecular underpinnings of LGSOC and applying this information to develop new therapies. SIGNIFICANCE: These findings highlight the utility of global multiomics to characterize LGSOC cell lines as research models, to determine biomarkers of MEKi resistance, and to identify potential novel therapeutic targets.


Asunto(s)
Biomarcadores Farmacológicos/análisis , Cistadenocarcinoma Seroso/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/aislamiento & purificación , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Estudios de Cohortes , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patología , Resistencia a Antineoplásicos/genética , Femenino , Genómica/métodos , Humanos , Metabolómica/métodos , Clasificación del Tumor , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Proteómica/métodos , Integración de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...