Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(43): e2109326119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-35609205

RESUMEN

The realization that ancient biomolecules are preserved in "fossil" samples has revolutionized archaeological science. Protein sequences survive longer than DNA, but their phylogenetic resolution is inferior; therefore, careful assessment of the research questions is required. Here, we show the potential of ancient proteins preserved in Pleistocene eggshell in addressing a longstanding controversy in human and animal evolution: the identity of the extinct bird that laid large eggs which were exploited by Australia's indigenous people. The eggs had been originally attributed to the iconic extinct flightless bird Genyornis newtoni (†Dromornithidae, Galloanseres) and were subsequently dated to before 50 ± 5 ka by Miller et al. [Nat. Commun. 7, 10496 (2016)]. This was taken to represent the likely extinction date for this endemic megafaunal species and thus implied a role of humans in its demise. A contrasting hypothesis, according to which the eggs were laid by a large mound-builder megapode (Megapodiidae, Galliformes), would therefore acquit humans of their responsibility in the extinction of Genyornis. Ancient protein sequences were reconstructed and used to assess the evolutionary proximity of the undetermined eggshell to extant birds, rejecting the megapode hypothesis. Authentic ancient DNA could not be confirmed from these highly degraded samples, but morphometric data also support the attribution of the eggshell to Genyornis. When used in triangulation to address well-defined hypotheses, paleoproteomics is a powerful tool for reconstructing the evolutionary history in ancient samples. In addition to the clarification of phylogenetic placement, these data provide a more nuanced understanding of the modes of interactions between humans and their environment.


Asunto(s)
Aves , Cáscara de Huevo , Animales , Humanos , Filogenia , Aves/genética , ADN/genética , Evolución Biológica , Fósiles , ADN Antiguo
2.
Sci Rep ; 10(1): 17244, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33057088

RESUMEN

The extensive peat bogs of Southern Scandinavia have yielded rich Mesolithic archaeological assemblages, with one of the most iconic artefacts being the bone point. Although great in number they remain understudied. Here we present a combined investigation of the typology, protein-based species composition, and absolute chronology of Maglemosian bone points. The majority of the bone points are made from cervids and bovines. However, changes both in species composition and barb morphology can be directly linked to a paucity of finds lasting nearly 600 years in Southern Scandinavia around 10,300 cal BP. We hypothesize that this hiatus was climate-driven and forced hunter-gatherers to abandon the lakes. Furthermore, the marked change in bone points coincides with a change in lithic technology. We, therefore, propose that the Maglemose culture in Southern Scandinavia is fundamentally divided into an Early Complex and a Late Complex.

3.
PLoS One ; 15(10): e0240512, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33057402

RESUMEN

Bacteria play an important role in the degradation of bone material. However, much remains to be learnt about the structure of their communities in degrading bone, and how the depositional environment influences their diversity throughout the exposure period. We genetically profiled the bacterial community in an experimental series of pig bone fragments (femur and humeri) deposited at different well-defined environments in Denmark. The bacterial community in the bone fragments and surrounding depositional environment were studied over one year, and correlated with the bioerosion damage patterns observed microscopically in the bones. We observed that the bacterial communities within the bones were heavily influenced by the local microbial community, and that the general bone microbial diversity increases with time after exposure. We found the presence of several known collagenase producing bacterial groups, and also observed increases in the relative abundance of several of these in bones with tunneling. We anticipate that future analyses using shotgun metagenomics on this and similar datasets will be able to provide insights into mechanisms of microbiome driven bone degradation.


Asunto(s)
Bacterias/crecimiento & desarrollo , Huesos/microbiología , Huesos/patología , Exposición a Riesgos Ambientales/análisis , Microbiota , Animales , Bacterias/clasificación , Bacterias/genética , Huesos/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Porcinos
4.
R Soc Open Sci ; 7(1): 191172, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32218948

RESUMEN

We present the analysis of an osseous finger ring from a predominantly early Neolithic context in Denmark. To characterize the artefact and identify the raw material used for its manufacture, we performed micro-computed tomography scanning, zooarchaeology by mass spectrometry (ZooMS) peptide mass fingerprinting, as well as protein sequencing by liquid chromatography tandem mass spectrometry (LC-MS/MS). We conclude that the ring was made from long bone or antler due to the presence of osteons (Haversian canals). Subsequent ZooMS analysis of collagen I and II indicated that it was made from Alces alces or Cervus elaphus material. We then used LC-MS/MS analysis to refine our species identification, confirming that the ring was made from Cervus elaphus, and to examine the rest of the proteome. This study demonstrates the potential of ancient proteomics for species identification of prehistoric artefacts made from osseous material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...