Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Biofuels ; 11: 162, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29991964

RESUMEN

BACKGROUND: Rice husk and rice straw represent promising sources of biomass for production of renewable fuels and chemicals. For efficient utilisation, lignocellulosic components must first be pretreated to enable efficient enzymatic saccharification and subsequent fermentation. Existing pretreatments create breakdown products such as sugar-derived furans, and lignin-derived phenolics that inhibit enzymes and fermenting organisms. Alkali pretreatments have also been shown to release significant levels of simple, free phenolics such as ferulic acid that are normally esterified to cell wall polysaccharides in the intact plant. These phenolics have recently been found to have considerable inhibitory properties. The aim of this research has been to establish the extent to which such free phenolic acids are also released during hydrothermal pretreatment of rice straw (RS) and rice husk (RH). RESULTS: RS and RH were subjected to hydrothermal pretreatments over a wide range of severities (1.57-5.45). FTIR analysis showed that the pretreatments hydrolysed and solubilised hemicellulosic moieties, leading to an enrichment of lignin and crystalline cellulose in the insoluble residue. The residues also lost the capacity for UV autofluorescence at pH 7 or pH 10, indicating the breakdown or release of cell wall phenolics. Saponification of raw RS and RH enabled identification and quantification of substantial levels of simple phenolics including ferulic acid (tFA), coumaric acid (pCA) and several diferulic acids (DiFAs) including 8-O-4'-DiFA, 8,5'-DiFA and 5,5'-DiFA. RH had higher levels of pCA and lower levels of tFA and DiFAs compared with RS. Assessment of the pretreatment liquors revealed that pretreatment-liberated phenolics present were not free but remained as phenolic esters (at mM concentrations) that could be readily freed by saponification. Many were lost, presumably through degradation, at the higher severities. CONCLUSION: Differences in lignin, tFA, DiFAs and pCA between RS and RH reflect differences in cell wall physiology, and probably contribute to the higher recalcitrance of RH compared with RS. Hydrothermal pretreatments, unlike alkali pretreatments, release cinnamic acid components as esters. The potential for pretreatment-liberated phenolic esters to be inhibitory to fermenting microorganisms is not known. However, the present study shows that they are found at concentrations that could be significantly inhibitory if released as free forms by enzyme activity.

2.
Biotechnol Biofuels ; 11: 62, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29541159

RESUMEN

BACKGROUND: Rice straw and husk are globally significant sources of cellulose-rich biomass and there is great interest in converting them to bioethanol. However, rice husk is reportedly much more recalcitrant than rice straw and produces larger quantities of fermentation inhibitors. The aim of this study was to explore the underlying differences between rice straw and rice husk with reference to the composition of the pre-treatment liquors and their impacts on saccharification and fermentation. This has been carried out by developing quantitative NMR screening methods. RESULTS: Air-dried rice husk and rice straw from the same cultivar were used as substrates. Carbohydrate compositions were similar, whereas lignin contents differed significantly (husk: 35.3% w/w of raw material; straw 22.1% w/w of raw material). Substrates were hydrothermally pre-treated with high-pressure microwave processing across a wide range of severities. 25 compounds were identified from the liquors of both pre-treated rice husk and rice straw. However, the quantities of compounds differed between the two substrates. Fermentation inhibitors such as 5-HMF and 2-FA were highest in husk liquors, and formic acid was higher in straw liquors. At a pre-treatment severity of 3.65, twice as much ethanol was produced from rice straw (14.22% dry weight of substrate) compared with the yield from rice husk (7.55% dry weight of substrate). Above severities of 5, fermentation was inhibited in both straw and husk. In addition to inhibitors, high levels of cellulase-inhibiting xylo-oligomers and xylose were found and at much higher concentrations in rice husk liquor. At low severities, organic acids and related intracellular metabolites were released into the liquor. CONCLUSIONS: Rice husk recalcitrance to saccharification is probably due to the much higher levels of lignin and, from other studies, likely high levels of silica. Therefore, if highly polluting chemical pre-treatments and multi-step biorefining processes are to be avoided, rice husk may need to be improved through selective breeding strategies, although more careful control of pre-treatment may be sufficient to reduce the levels of fermentation inhibitors, e.g. through steam explosion-induced volatilisation. For rice straw, pre-treating at severities of between 3.65 and 4.25 would give a glucose yield of between 37.5 and 40% (w/DW, dry weight of the substrate) close to the theoretical yield of 44.1% w/DW, and an insignificant yield of total inhibitors.

3.
Biotechnol Biofuels ; 10: 227, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29026442

RESUMEN

BACKGROUND: Wheat straw forms an important, reliable source of lignocellulosic biomass for use in second-generation ethanol production. However, there is limited understanding of the variation in quality of straw from current breeding cultivars, and studies on such variation have generally employed suboptimal pretreatments. There is also a degree of confusion regarding phenotypic characteristics relevant to optimising the enzymatic saccharification of cellulose after suitable pretreatments for biorefining compared with those which determine good ruminant digestibility. The aim of this study has been to (a) evaluate and compare the levels of glucose enzymatically released from straw obtained from 89 cultivars of winter wheat after optimised hydrothermal pretreatments and (b) identify the underlying phenotypic characteristics relevant to enhanced glucose production with special reference to the ratios of constituent tissue types. RESULTS: Optimised pretreatment involved hydrothermal extraction at 210 °C for 10 min. Using excess cellulases, quantitative saccharification was achieved within 24 h. The amount of glucose released ranged from 192 to 275 mg/g. The extent of glucose release was correlated with (a) the level of internode tissue (R = 0.498; p = 6.84 × 10-7), (b) stem height (R = 0.491; p = 1.03 × 10-6), and (c) chemical characteristics particular to stem tissues including higher levels of cellulose (R = 0.552; p = 2.06 × 10-8) and higher levels of lignin R = 0.494; p = 8.67 × 10-7. CONCLUSIONS: In order to achieve maximum yields of cellulosic glucose for second-generation ethanol production, a predisposition for wheat to produce cellulose-enriched internode stem tissue, particularly of longer length, would be beneficial. This contrasts with the ideotype for ruminant nutrition, in which an increased proportion of leaf tissue is preferable.

4.
Sci Rep ; 7(1): 14259, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29079838

RESUMEN

In addition to ethanol, yeasts have the potential to produce many other industrially-relevant chemicals from numerous different carbon sources. However there remains a paucity of information about overall capability across the yeast family tree. Here, 11 diverse species of yeasts with genetic backgrounds representative of different branches of the family tree were investigated. They were compared for their abilities to grow on a range of sugar carbon sources, to produce potential platform chemicals from such substrates and to ferment hydrothermally pretreated rice straw under simultaneous saccharification and fermentation conditions. The yeasts differed considerably in their metabolic capabilities and production of ethanol. A number could produce significant amounts of ethyl acetate, arabinitol, glycerol and acetate in addition to ethanol, including from hitherto unreported carbon sources. They also demonstrated widely differing efficiencies in the fermentation of sugars derived from pre-treated rice straw biomass and differential sensitivities to fermentation inhibitors. A new catabolic property of Rhodotorula mucilaginosa (NCYC 65) was discovered in which sugar substrate is cleaved but the products are not metabolised. We propose that engineering this and some of the other properties discovered in this study and transferring such properties to conventional industrial yeast strains could greatly expand their biotechnological utility.


Asunto(s)
Biodiversidad , Biocombustibles/microbiología , Rhodotorula/metabolismo , Carbono/metabolismo , Fermentación , Oryza/química , Rhodotorula/crecimiento & desarrollo , Especificidad de la Especie , Azúcares/metabolismo
5.
Biotechnol Biofuels ; 9(1): 193, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27602056

RESUMEN

BACKGROUND: Rice cultivation produces two waste streams, straw and husk, which could be exploited more effectively. Chemical pretreatment studies using rice residues have largely focussed on straw exploitation alone, and often at low substrate concentrations. Moreover, it is currently not known how rice husk, the more recalcitrant residue, responds to steam explosion without the addition of chemicals. RESULTS: The aim of this study has been to systematically compare the effects of steam explosion severity on the enzymatic saccharification and simultaneous saccharification and fermentation of rice straw and husk produced from a variety widely grown in Vietnam (Oryza sativa, cv. KhangDan18). Rice straw and husk were steam exploded (180-230 °C for 10 min) into hot water and washed to remove fermentation inhibitors. In both cases, pretreatment at 210 °C and above removed most of the noncellulosic sugars. Prolonged saccharification at high cellulase doses showed that rice straw could be saccharified most effectively after steam explosion at 210 °C for 10 min. In contrast, rice husk required more severe pretreatment conditions (220 °C for 10 min), and achieved a much lower yield (75 %), even at optimal conditions. Rice husk also required a higher cellulase dose for optimal saccharification (10 instead of 6 FPU/g DM). Hemicellulase addition failed to improve saccharification. Small pilot scale saccharification at 20 % (w/v) substrate loading in a 10 L high torque bioreactor resulted in similarly high glucose yields for straw (reaching 9 % w/v), but much less for husk. Simultaneous saccharification and fermentation under optimal pretreatment and saccharification conditions showed similar trends, but the ethanol yield from the rice husk was less than 40 % of the theoretical yield. CONCLUSIONS: Despite having similar carbohydrate compositions, pretreated rice husk is much less amenable to saccharification than pretreated rice straw. This is likely to attenuate its use as a biorefinery feedstock unless improvements can be made either in the feedstock through breeding and/or modern biotechnology, or in the pretreatment through the employment of improved or alternative technologies. Physiological differences in the overall chemistry or structure may provide clues to the nature of lignocellulosic recalcitrance.

6.
Bioresour Technol ; 187: 136-143, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25846183

RESUMEN

This study evaluated steam (SE) explosion on the saccharification and simultaneous saccharification and fermentation (SSF) of waste copier paper. SE resulted in a colouration, a reduction in fibre thickness and increased water absorption. Changes in chemical composition were evident at severities greater than 4.24 resulting in a loss of xylose and the production of breakdown products known to inhibit fermentation (particularly formic acid and acetic acid). SE did not improve final yields of glucose or ethanol, and at severities 4.53 and 4.83 reduced yields probably due to the effect of breakdown products and fermentation inhibitors. However, at moderate severities of 3.6 and 3.9 there was an increase in initial rates of hydrolysis which may provide a basis for reducing processing times. Co-steam explosion of waste copier paper and wheat straw attenuated the production of breakdown products, and may also provide a basis for improving SSF of lignocellulose.


Asunto(s)
Lignina/química , Lignina/metabolismo , Papel , Saccharomyces cerevisiae/metabolismo , Vapor , Triticum/microbiología , Conservación de los Recursos Naturales/métodos , Fermentación , Residuos Industriales/prevención & control , Componentes Aéreos de las Plantas/microbiología , Eliminación de Residuos/métodos , Xilosa/síntesis química , Xilosa/metabolismo
7.
Biotechnol Biofuels ; 8: 23, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25717345

RESUMEN

BACKGROUND: Pretreatments are a prerequisite for enzymatic hydrolysis of biomass and production of ethanol. They are considered to open up the plant cell wall structure by altering, moving or solubilizing lignin and hydrolyzing a proportion of hemicellulosic moieties. However, there is little information concerning pretreatment-induced changes on wheat bran cell wall polymers and indeed on changes in cell wall phenolic esters in bran or other lignocellulosic biomass. Here, we evaluate polymeric changes (chemical and physical) as a result of selected hydrothermal pretreatment conditions on destarched wheat bran using controlled polymer extraction methods. Quantification of cell wall components together with soluble oligosaccharides, the insoluble residues and ease of extractability and fractionation of biomass residues were conducted. RESULTS: Pretreatment solubilized selected arabinoxylans and associated cross-linking ferulic and diferulic acids with a concomitant increase in lignin and cellulosic glucose. The remaining insoluble arabinoxylans were more readily extractable in alkali and showed considerable depolymerization. The degree of arabinose substitution was less in xylans released by higher concentrations of alkali. The recalcitrant biomass which remained after pretreatment and alkali extraction contained mostly cellulosic glucose and Klason lignin. Pretreatment generated small but insignificant amounts of yeast-inhibiting compounds such as furfural and hydroxymethyl furfural. As such, simultaneous saccharification and fermentation of the hydrothermally pretreated bran resulted in increased ethanol yields compared to that of the control (97.5% compared to 63% theoretical). CONCLUSION: Hydrothermal pretreatment of destarched wheat bran resulted in degradation and depolymerization of the hemicellulosic arabinoxylans together with some breakdown of cellulosic glucose. This was accompanied by a significant reduction in the cross-linking phenolic acids such as ferulic and diferulic acids. The results suggest that hydrothermal pretreatment enhances enzymatic digestibility of the cellulose not only by depolymerization and solubilization of the hemicelluloses but by breakdown of interpolymeric phenolic cross-links between the remaining insoluble polymers. This allows easier access of hydrolytic enzymes by opening or loosening of the cell wall thus resulting in enhanced saccharification of cellulose and subsequent fermentation to ethanol. The reduction in cinnamic acids by selected breeding or biotechnological approaches could provide a useful basis for improved saccharification and fractionation of wheat bran polysaccharides.

8.
Appl Biochem Biotechnol ; 172(7): 3621-34, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24557952

RESUMEN

Waste copier paper is a potential substrate for the production of glucose relevant for manufacture of platform chemicals and intermediates, being composed of 51 % glucan. The yield and concentration of glucose arising from the enzymatic saccharification of solid ink-free copier paper as cellulosic substrate was studied using a range of commercial cellulase preparations. The results show that in all cellulase preparations examined, maximum hydrolysis was only achieved with the addition of beta-glucosidase, despite its presence in the enzyme mixtures. With the use of Accellerase® (cellulase), high substrate loading decreased conversion yield. However, this was overcome if the enzyme was added between 12.5 and 20 FPU g substrate(-1). Furthermore, this reaction condition facilitated continual stirring and enabled sequential additions (up to 50 % w/v) of paper to be made to the hydrolysis reaction, degrading nearly all (99 %) of the cellulose fibres and increasing the final concentration of glucose whilst simultaneously making high substrate concentrations achievable. Under optimal conditions (50 °C, pH 5.0, 72 h), digestions facilitate the production of glucose to much improved concentrations of up to 1.33 mol l(-1).


Asunto(s)
Celulasa/química , Glucosa/química , Papel , Residuos/análisis , Biotecnología , Hidrólisis , beta-Glucosidasa/química
9.
PLoS One ; 8(3): e59957, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23544114

RESUMEN

As a competitive exclusion agent, Lactobacillus johnsonii FI9785 has been shown to prevent the colonization of selected pathogenic bacteria from the chicken gastrointestinal tract. During growth of the bacterium a rare but consistent emergence of an altered phenotype was noted, generating smooth colonies in contrast to the wild type rough form. A smooth colony variant was isolated and two-dimensional gel analysis of both strains revealed a protein spot with different migration properties in the two phenotypes. The spot in both gels was identified as a putative tyrosine kinase (EpsC), associated with a predicted exopolysaccharide gene cluster. Sequencing of the epsC gene from the smooth mutant revealed a single substitution (G to A) in the coding strand, resulting in the amino acid change D88N in the corresponding gene product. A native plasmid of L. johnsonii was engineered to produce a novel vector for constitutive expression and this was used to demonstrate that expression of the wild type epsC gene in the smooth mutant produced a reversion to the rough colony phenotype. Both the mutant and epsC complemented strains had increased levels of exopolysaccharides compared to the wild type strain, indicating that the rough phenotype is not solely associated with the quantity of exopolysaccharide. Another gene in the cluster, epsE, that encoded a putative undecaprenyl-phosphate galactosephosphotransferase, was deleted in order to investigate its role in exopolysaccharide biosynthesis. The ΔepsE strain exhibited a large increase in cell aggregation and a reduction in exopolysaccharide content, while plasmid complementation of epsE restored the wild type phenotype. Flow cytometry showed that the wild type and derivative strains exhibited clear differences in their adhesive ability to HT29 monolayers in tissue culture, demonstrating an impact of EPS on surface properties and bacteria-host interactions.


Asunto(s)
Membrana Celular/metabolismo , Lactobacillus/citología , Lactobacillus/genética , Mutación/genética , Polisacáridos Bacterianos/genética , Secuencia de Aminoácidos , Adhesión Bacteriana/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Carbohidratos/análisis , Recuento de Colonia Microbiana , Eliminación de Gen , Genes Bacterianos/genética , Prueba de Complementación Genética , Células HT29 , Humanos , Lactobacillus/crecimiento & desarrollo , Lactobacillus/ultraestructura , Datos de Secuencia Molecular , Peso Molecular , Familia de Multigenes , Fenotipo , Polisacáridos Bacterianos/biosíntesis , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
10.
Bioresour Technol ; 134: 117-26, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23500568

RESUMEN

A fundamental goal of second generation ethanol production is to increase the ethanol concentration to 10% (v/v) or more to optimise distillation costs. Semi simultaneous saccharification and fermentations (SSSF) were conducted at small pilot scale (5L) utilising fed-batch additions of solid shredded copier paper substrate. Early addition of Accellerase® 1500 at 16 FPU/g substrate and 30 U/g ß-glucosidase followed by substrate only batch addition allowed low final equivalent enzyme concentrations to be achieved (3.7 FPU/g substrate) whilst maintaining digestion. Batch addition resulted in a cumulative substrate concentration equivalent to 65% (w/v). This in turn resulted in the production of high concentrations of ethanol (11.6% v/v). The success of this strategy relied on the capacity of the bioreactor to perform high shear mixing as required. Further research into the timing and number of substrate additions could lead to further improvement in overall yields from the 65.5% attained.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Metabolismo de los Hidratos de Carbono , Celulosa/metabolismo , Etanol/metabolismo , Fermentación , Papel , Residuos/análisis , Reactores Biológicos/microbiología , Cromatografía Líquida de Alta Presión , Hidrólisis , Especificidad por Sustrato
11.
Bioresour Technol ; 131: 226-34, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23347931

RESUMEN

Thermophysical pretreatment enhances the enzymatic hydrolysis of lignocellulose. However, its impact on cell wall chemistry is still poorly understood. This paper reports the effects of hydrothermal pretreatment on the degradation and alkali-extractability of wheat straw cell wall polymers. Pretreatment resulted in loss and/or solubilization of arabinoxylans (by 53%), ferulic and diferulic acids which are important cross-linking agents accompanied by concomitant increases in cellulose (up to 43%) and lignin (29%). The remaining water-insoluble hemicelluloses were more readily extractable in alkali and were reduced in molecular weight indicating substantial thermochemical depolymerization. They were also associated with smaller but significant amounts of (cellulose-derived) glucose. The alkali-insoluble residues consisted predominantly of cellulosic glucose and lignin and contained p-coumaric acid. The depolymerization of hemicelluloses, reduction in cinnamic acids and partial degradation of cellulose is likely to contribute significantly to the accessibility of cellulases during subsequent enzymolysis.


Asunto(s)
Membrana Celular/química , Celulosa/análisis , Glucosa/análisis , Lignina/análisis , Componentes Aéreos de las Plantas/química , Triticum/química , Agua/química , Fraccionamiento Celular , Calor , Componentes Aéreos de las Plantas/citología , Triticum/citología
12.
J Agric Food Chem ; 59(20): 11019-25, 2011 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-21894957

RESUMEN

The enzymatic hydrolysis of brewers' spent grain (BSG) has been investigated through treatment with commercial carbohydrases and proteases. Resultant residues were then chemically fractionated and delignified. Enzymatic treatments released 25-30% of the BSG mass and yielded precursors suitable for subsequent conversion to potentially value-added products. Controlled chemical fractionation selectively solubilized arabinoxylan but with no differences apparent due to prior enzyme treatment. The loss of non-polysaccharide components during alkali treatment suggests the presence of a high proportion of alkali-soluble lignin. Further delignification of the alkali-insoluble residues and further chemical fractionation released the remaining hemicellulose, to yield a residue which was >90% cellulose. Further knowledge of the properties and interaction between BSG polymers will facilitate an improved enzyme-assisted total deconstruction of BSG and hence the exploitation of its biomass.


Asunto(s)
Hordeum , Semillas/química , Semillas/metabolismo , Celulosa/análisis , Celulosa/metabolismo , Fraccionamiento Químico , Glicósido Hidrolasas/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Lignina/análisis , Lignina/metabolismo , Péptido Hidrolasas/metabolismo , Polisacáridos/análisis , Polisacáridos/metabolismo , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...