Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 14(3): e0214545, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30925190

RESUMEN

Doxorubicin is a chemotherapeutic agent that is commonly used to treat a broad range of cancers. However, significant cardiotoxicity, associated with prolonged exposure to doxorubicin, limits its continued therapeutic use. One strategy to prevent the uptake of doxorubicin into cardiac cells is the encapsulation of the drug to prevent non-specific uptake and also to improve the drugs' pharmacokinetic properties. Although encapsulated forms of doxorubicin limit the cardiotoxicity observed, they are not without their own liabilities as an increased amount of drug is deposited in the skin where liposomal doxorubicin can cause palmar-plantar erythrodysesthesia. Exosomes are small endogenous extracellular vesicles, that transfer bioactive material from one cell to another, and are considered attractive drug delivery vehicles due to their natural origin. In this study, we generated doxorubicin-loaded exosomes and demonstrate their rapid cellular uptake and re-distribution of doxorubicin from endosomes to the cytoplasm and nucleus resulting in enhanced potency in a number of cultured and primary cell lines when compared to free doxorubicin and liposomal formulations of doxorubicin. In contrast to other delivery methods for doxorubicin, exosomes do not accumulate in the heart, thereby providing potential for limiting the cardiac side effects and improved therapeutic index.


Asunto(s)
Doxorrubicina/metabolismo , Doxorrubicina/farmacología , Exosomas/metabolismo , Apoptosis/efectos de los fármacos , Transporte Biológico , Línea Celular , Exosomas/efectos de los fármacos , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Cinética
2.
Nanoscale ; 10(29): 14230-14244, 2018 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-30010165

RESUMEN

Exosomes are extracellular vesicles that mediate cell-to-cell communication by transferring biological cargo, such as DNA, RNA and proteins. Through genetic engineering of exosome-producing cells or manipulation of purified exosomes, it is possible to load exosomes with therapeutic molecules and target them to specific cells via the display of targeting moieties on their surface. This provides an opportunity to exploit a naturally-occurring biological process for therapeutic purposes. In this study, we explored the potential of single chain variable fragments (scFv) as targeting domains to achieve delivery of exosomes to cells expressing a cognate antigen. We generated exosomes targeting the Her2 receptor and, by varying the affinity of the scFvs and the Her2 expression level on recipient cells, we determined that both a high-affinity anti-Her2-scFv (KD≤ 1 nM) and cells expressing a high level (≥106 copies per cell) of Her2 were optimally required to enable selective uptake. We also demonstrate that targeting exosomes to cells via a specific cell surface receptor can alter their intracellular trafficking route, providing opportunities to influence the efficiency of delivery and fate of intracellular cargo. These experiments provide solid data to support the wider application of exosomes displaying antibody fragments as vehicles for the targeted delivery of therapeutic molecules.


Asunto(s)
Exosomas/química , Receptor ErbB-2/química , Anticuerpos de Cadena Única/química , Línea Celular Tumoral , Células HEK293 , Humanos
4.
J Immunol ; 198(1): 528-537, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881707

RESUMEN

Affinity- and stability-engineered variants of CTLA4-Ig fusion molecules with enhanced pharmacokinetic profiles could yield improved therapies with the potential of higher efficacy and greater convenience to patients. In this study, to our knowledge, we have, for the first time, used in vitro evolution to simultaneously optimize CTLA4 affinity and stability. We selected for improved binding to both ligands, CD80 and CD86, and screened as dimeric Fc fusions directly in functional assays to identify variants with stronger suppression of in vitro T cell activation. The majority of CTLA4 molecules showing the largest potency gains in primary in vitro and ex vivo human cell assays, using PBMCs from type 1 diabetes patients, had significant improvements in CD80, but only modest gains in CD86 binding. We furthermore observed different potency rankings between our lead molecule MEDI5265, abatacept, and belatacept, depending on which type of APC was used, with MEDI5265 consistently being the most potent. We then created fusions of both stability- and potency-optimized CTLA4 moieties with human Fc variants conferring extended plasma t1/2 In a cynomolgus model of T cell-dependent Ab response, the CTLA4-Ig variant MEDI5265 could be formulated at >100 mg/ml for s.c. administration and showed superior efficacy and significantly prolonged serum t1/2 The combination of higher stability and potency with prolonged pharmacokinetics could be compatible with very infrequent, s.c. dosing while maintaining a similar level of immune suppression to more frequently and i.v. administered licensed therapies.


Asunto(s)
Abatacept/farmacología , Diseño de Fármacos , Inmunosupresores/farmacología , Abatacept/química , Animales , Antígeno B7-1/inmunología , Antígeno B7-2 , Estabilidad de Medicamentos , Humanos , Inmunosupresores/química , Unión Proteica/inmunología
5.
J Biol Chem ; 288(27): 19760-72, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23689510

RESUMEN

Glucose-dependent insulinotropic polypeptide (GIP) is an endogenous hormonal factor (incretin) that, upon binding to its receptor (GIPr; a class B G-protein-coupled receptor), stimulates insulin secretion by beta cells in the pancreas. There has been a lack of potent inhibitors of the GIPr with prolonged in vivo exposure to support studies on GIP biology. Here we describe the generation of an antagonizing antibody to the GIPr, using phage and ribosome display libraries. Gipg013 is a specific competitive antagonist with equally high potencies to mouse, rat, dog, and human GIP receptors with a Ki of 7 nm for the human GIPr. Gipg013 antagonizes the GIP receptor and inhibits GIP-induced insulin secretion in vitro and in vivo. A crystal structure of Gipg013 Fab in complex with the human GIPr extracellular domain (ECD) shows that the antibody binds through a series of hydrogen bonds from the complementarity-determining regions of Gipg013 Fab to the N-terminal α-helix of GIPr ECD as well as to residues around its highly conserved glucagon receptor subfamily recognition fold. The antibody epitope overlaps with the GIP binding site on the GIPr ECD, ensuring competitive antagonism of the receptor. This well characterized antagonizing antibody to the GIPr will be useful as a tool to further understand the biological roles of GIP.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino , Epítopos , Fragmentos Fab de Inmunoglobulinas , Receptores de la Hormona Gastrointestinal , Animales , Anticuerpos Monoclonales de Origen Murino/química , Anticuerpos Monoclonales de Origen Murino/genética , Anticuerpos Monoclonales de Origen Murino/metabolismo , Anticuerpos Monoclonales de Origen Murino/farmacología , Cristalografía por Rayos X , Perros , Epítopos/química , Epítopos/genética , Epítopos/metabolismo , Polipéptido Inhibidor Gástrico , Células HEK293 , Humanos , Enlace de Hidrógeno , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/metabolismo , Fragmentos Fab de Inmunoglobulinas/farmacología , Insulina/genética , Insulina/metabolismo , Secreción de Insulina , Masculino , Ratones , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Ratas , Ratas Sprague-Dawley , Receptores de la Hormona Gastrointestinal/antagonistas & inhibidores , Receptores de la Hormona Gastrointestinal/química , Receptores de la Hormona Gastrointestinal/genética , Receptores de la Hormona Gastrointestinal/metabolismo , Relación Estructura-Actividad
6.
Assay Drug Dev Technol ; 2(6): 659-73, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15674024

RESUMEN

Many diseases are caused by aberrant cell signalling controlled by intracellular protein-protein interactions. Inhibitors of such interactions thus have enormous potential as chemotherapeutic agents. It is advantageous to test for such inhibitors using cell-based screens in which modulation of the interaction gives a rapid response. Fluorescence resonance energy transfer (FRET) systems, based on interacting donor and acceptor green fluorescent proteins (GFPs), have potential in such screens. Here, we describe experiments aimed at using a FRET system to monitor the interaction between the small G protein Rac and a region of its binding partner, the Ser/Thr kinase, p21-activated kinase (PAK). Initial attempts to use a previously described construct, enhanced GFP-PAK-enhanced blue fluorescent protein, failed because of the difficulty of obtaining equal and high expression levels of both the fusion protein and Rac in mammalian cells. Here, three proteins in which Rac, PAK, and the two GFPs were concatenated in different combinations on a single protein were expressed and characterised. In each construct, however, intramolecular interaction of PAK and Rac was observed. As this was of extremely high affinity, presumably because of entropy effects from the interacting partners being tethered, these molecules were not suitable for detection of inhibitors of the interaction. Molecular modelling was used to investigate the way in which the concatenated constructs might form intramolecular interactions. As this explained key properties of these proteins, it is likely that this approach could be used to design constructs where the unwanted intramolecular protein-protein interactions are prevented, whilst allowing the desired intermolecular Rac/PAK interaction. This would provide constructs that are useable for drug discovery.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Proteínas Serina-Treonina Quinasas/química , Proteínas de Unión al GTP rac/química , Animales , Células Cultivadas , Clonación Molecular , Simulación por Computador , Fluorescencia , Vectores Genéticos , Proteínas Fluorescentes Verdes/biosíntesis , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Luz , Mamíferos/metabolismo , Péptido Hidrolasas/química , Proteínas Serina-Treonina Quinasas/biosíntesis , Dispersión de Radiación , Trombina/química , Transfección , Quinasas p21 Activadas , Proteínas de Unión al GTP rac/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...