Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetes ; 58(10): 2189-97, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19581415

RESUMEN

OBJECTIVE: Recent data demonstrated that glucose sensing in different tissues is initiated by an intracellular redox signaling pathway in physiological conditions. However, the relevance of such a mechanism in metabolic disease is not known. The aim of the present study was to determine whether brain glucose hypersensitivity present in obese Zücker rats is related to an alteration in redox signaling. RESEARCH DESIGN AND METHODS: Brain glucose sensing alteration was investigated in vivo through the evaluation of electrical activity in arcuate nucleus, changes in reactive oxygen species levels, and hypothalamic glucose-induced insulin secretion. In basal conditions, modifications of redox state and mitochondrial functions were assessed through oxidized glutathione, glutathione peroxidase, manganese superoxide dismutase, aconitase activities, and mitochondrial respiration. RESULTS: Hypothalamic hypersensitivity to glucose was characterized by enhanced electrical activity of the arcuate nucleus and increased insulin secretion at a low glucose concentration, which does not produce such an effect in normal rats. It was associated with 1) increased reactive oxygen species levels in response to this low glucose load, 2) constitutive oxidized environment coupled with lower antioxidant enzyme activity at both the cellular and mitochondrial level, and 3) overexpression of several mitochondrial subunits of the respiratory chain coupled with a global dysfunction in mitochondrial activity. Moreover, pharmacological restoration of the glutathione hypothalamic redox state by reduced glutathione infusion in the third ventricle fully reversed the cerebral hypersensitivity to glucose. CONCLUSIONS: The data demonstrated that obese Zücker rats' impaired hypothalamic regulation in terms of glucose sensing is linked to an abnormal redox signaling, which originates from mitochondria dysfunction.


Asunto(s)
Glucosa/farmacología , Hipotálamo/fisiopatología , Obesidad/fisiopatología , Aconitato Hidratasa/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Encéfalo/fisiopatología , Homeostasis , Hipersensibilidad/metabolismo , Hipersensibilidad/fisiopatología , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiología , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Obesidad/genética , Oxidación-Reducción , Fosforilación Oxidativa/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Zucker , Transducción de Señal
2.
J Neurosci Methods ; 178(2): 301-7, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19150628

RESUMEN

Different roles of mitochondria in brain function according to brain area are now clearly emerging. Unfortunately, no technique is yet described to investigate mitochondria function in specific brain area. In this article, we provide a complete description of a procedure to analyze the mitochondrial function in rat brain biopsies. Our two-step method consists in a saponin permeabilization of fresh brain tissues in combination with high-resolution respirometry to acquire the integrated respiratory rate of the biopsy. In the first part, we carefully checked the mitochondria integrity after permeabilization, defined experimental conditions to determine the respiratory control ratio (RCR), and tested the reproducibility of this technique. In the second part, we applied our method to test its sensitivity. As a result, this method was sensitive enough to reveal region specificity of mitochondrial respiration within the brain. Moreover, we detected physiopathological modulation of the mitochondrial function in the hypothalamus. Thus this new technique that takes all cell types into account, and does not discard or select any mitochondria sub-population is very suitable to analyze the integrated mitochondrial respiration of brain biopsies.


Asunto(s)
Técnicas de Laboratorio Clínico , Hipotálamo/fisiología , Mitocondrias/fisiología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Respiración de la Célula , Ayuno/fisiología , Hiperglucemia/fisiopatología , Hipotálamo/efectos de los fármacos , Hipotálamo/ultraestructura , Masculino , Microscopía Electrónica , Mitocondrias/ultraestructura , Consumo de Oxígeno , Permeabilidad/efectos de los fármacos , Fosforilación , Ratas , Ratas Wistar , Ratas Zucker , Saponinas/farmacología , Estrés Fisiológico
3.
Diabetes ; 58(3): 673-81, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19073765

RESUMEN

OBJECTIVE: Insulin secretion involves complex events in which the mitochondria play a pivotal role in the generation of signals that couple glucose detection to insulin secretion. Studies on the mitochondrial generation of reactive oxygen species (ROS) generally focus on chronic nutrient exposure. Here, we investigate whether transient mitochondrial ROS production linked to glucose-induced increased respiration might act as a signal for monitoring insulin secretion. RESEARCH DESIGN AND METHODS: ROS production in response to glucose was investigated in freshly isolated rat islets. ROS effects were studied using a pharmacological approach and calcium imaging. RESULTS: Transient glucose increase from 5.5 to 16.7 mmol/l stimulated ROS generation, which was reversed by antioxidants. Insulin secretion was dose dependently blunted by antioxidants and highly correlated with ROS levels. The incapacity of beta-cells to secrete insulin in response to glucose with antioxidants was associated with a decrease in ROS production and in contrast to the maintenance of high levels of ATP and NADH. Then, we investigated the mitochondrial origin of ROS (mROS) as the triggering signal. Insulin release was mimicked by the mitochondrial-complex blockers, antimycin and rotenone, that generate mROS. The adding of antioxidants to mitochondrial blockers or to glucose was used to lower mROS reversed insulin secretion. Finally, calcium imaging on perifused islets using glucose stimulation or mitochondrial blockers revealed that calcium mobilization was completely reversed using the antioxidant trolox and that it was of extracellular origin. No toxic effects were present using these pharmacological approaches. CONCLUSIONS: Altogether, these complementary results demonstrate that mROS production is a necessary stimulus for glucose-induced insulin secretion.


Asunto(s)
Glucosa/farmacología , Insulina/metabolismo , Islotes Pancreáticos/fisiología , Mitocondrias/fisiología , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Cromanos/farmacología , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Cinética , Masculino , Mitocondrias/efectos de los fármacos , NAD/metabolismo , Ratas , Ratas Wistar , Transducción de Señal , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Tapsigargina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...