Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Open Forum Infect Dis ; 11(Suppl 1): S17-S24, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38532956

RESUMEN

Background: Accurate estimation of diarrhea incidence from facility-based surveillance requires estimating the population at risk and accounting for case patients who do not seek care. The Enterics for Global Health (EFGH) Shigella surveillance study will characterize population denominators and healthcare-seeking behavior proportions to calculate incidence rates of Shigella diarrhea in children aged 6-35 months across 7 sites in Africa, Asia, and Latin America. Methods: The Enterics for Global Health (EFGH) Shigella surveillance study will use a hybrid surveillance design, supplementing facility-based surveillance with population-based surveys to estimate population size and the proportion of children with diarrhea brought for care at EFGH health facilities. Continuous data collection over a 24 month period captures seasonality and ensures representative sampling of the population at risk during the period of facility-based enrollments. Study catchment areas are broken into randomized clusters, each sized to be feasibly enumerated by individual field teams. Conclusions: The methods presented herein aim to minimize the challenges associated with hybrid surveillance, such as poor parity between survey area coverage and facility coverage, population fluctuations, seasonal variability, and adjustments to care-seeking behavior.

2.
Open Forum Infect Dis ; 11(Suppl 1): S121-S128, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38532951

RESUMEN

Background: The Enterics for Global Health (EFGH) Peru site will enroll subjects in a periurban area of the low Amazon rainforest. The political department of Loreto lags behind most of Peru in access to improved sources of water and sanitation, per capita income, children born <2.5 kg, and infant and child mortality. Chronic undernutrition as manifested by linear growth shortfalls is common, but wasting and acute malnutrition are not. Methods: The recruitment of children seeking care for acute diarrheal disease takes place at a geographic cluster of government-based primary care centers in an area where most residents are beneficiaries of free primary healthcare. Results: Rates of diarrheal disease, dysentery, and Shigella are known to be high in the region, with some of the highest rates of disease documented in the literature and little evidence in improvement over the last 2 decades. This study will update estimates of shigellosis by measuring the prevalence of Shigella by polymerase chain reaction and culture in children seeking care and deriving population-based estimates by measuring healthcare seeking at the community level. Conclusions: Immunization has been offered universally against rotavirus in the region since 2009, and in a context where adequate water and sanitation are unlikely to obtain high standards in the near future, control of principal enteropathogens through immunization may be the most feasible way to decrease the high burden of disease in the area in the near future.

3.
PLoS One ; 19(2): e0297775, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38412156

RESUMEN

BACKGROUND: Diarrhea remains a leading cause of childhood illness throughout the world that is increasing due to climate change and is caused by various species of ecologically sensitive pathogens. The emerging Planetary Health movement emphasizes the interdependence of human health with natural systems, and much of its focus has been on infectious diseases and their interactions with environmental and human processes. Meanwhile, the era of big data has engendered a public appetite for interactive web-based dashboards for infectious diseases. However, enteric infectious diseases have been largely overlooked by these developments. METHODS: The Planetary Child Health & Enterics Observatory (Plan-EO) is a new initiative that builds on existing partnerships between epidemiologists, climatologists, bioinformaticians, and hydrologists as well as investigators in numerous low- and middle-income countries. Its objective is to provide the research and stakeholder community with an evidence base for the geographical targeting of enteropathogen-specific child health interventions such as novel vaccines. The initiative will produce, curate, and disseminate spatial data products relating to the distribution of enteric pathogens and their environmental and sociodemographic determinants. DISCUSSION: As climate change accelerates there is an urgent need for etiology-specific estimates of diarrheal disease burden at high spatiotemporal resolution. Plan-EO aims to address key challenges and knowledge gaps by making and disseminating rigorously obtained, generalizable disease burden estimates. Pre-processed environmental and EO-derived spatial data products will be housed, continually updated, and made publicly available for download to the research and stakeholder communities. These can then be used as inputs to identify and target priority populations living in transmission hotspots and for decision-making, scenario-planning, and disease burden projection. STUDY REGISTRATION: PROSPERO protocol #CRD42023384709.


Asunto(s)
Enfermedades Transmisibles , Países en Desarrollo , Niño , Humanos , Investigación Interdisciplinaria , Salud Infantil , Enfermedades Transmisibles/epidemiología , Factores de Riesgo , Diarrea/epidemiología , Internet
4.
Res Sq ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36993232

RESUMEN

Background: Diarrhea remains a leading cause of childhood illness throughout the world that is increasing due to climate change and is caused by various species of ecologically sensitive pathogens. The emerging Planetary Health movement emphasizes the interdependence of human health with natural systems, and much of its focus has been on infectious diseases and their interactions with environmental and human processes. Meanwhile, the era of big data has engendered a public appetite for interactive web-based dashboards for infectious diseases. However, enteric infectious diseases have been largely overlooked by these developments. Methods: The Planetary Child Health and Enterics Observatory (Plan-EO) is a new initiative that builds on existing partnerships between epidemiologists, climatologists, bioinformaticians, and hydrologists as well as investigators in numerous low- and middle-income countries. Its objective is to provide the research and stakeholder community with an evidence base for the geographical targeting of enteropathogen-specific child health interventions such as novel vaccines. The initiative will produce, curate, and disseminate spatial data products relating to the distribution of enteric pathogens and their environmental and sociodemographic determinants. Discussion: As climate change accelerates there is an urgent need for etiology-specific estimates of diarrheal disease burden at high spatiotemporal resolution. Plan-EO aims to address key challenges and knowledge gaps by making rigorously obtained, generalizable disease burden estimates freely available and accessible to the research and stakeholder communities. Pre-processed environmental and EO-derived spatial data products will be housed, continually updated, and made publicly available to the research and stakeholder communities both within the webpage itself and for download. These inputs can then be used to identify and target priority populations living in transmission hotspots and for decision-making, scenario-planning, and disease burden projection. Study registration: PROSPERO protocol #CRD42023384709.

6.
medRxiv ; 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873274

RESUMEN

Recent advances in clinical prediction for diarrheal etiology in low- and middle-income countries have revealed that addition of weather data improves predictive performance. However, the optimal source of weather data remains unclear. We aim to compare model estimated satellite- and ground-based observational data with weather station directly-observed data for diarrheal prediction. We used clinical and etiological data from a large multi-center study of children with diarrhea to compare these methods. We show that the two sources of weather conditions perform similarly in most locations. We conclude that while model estimated data is a viable, scalable tool for public health interventions and disease prediction, directly observed weather station data approximates the modeled data, and given its ease of access, is likely adequate for prediction of diarrheal etiology in children in low- and middle-income countries.

7.
Sci Data ; 10(1): 367, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286690

RESUMEN

An impressive number of COVID-19 data catalogs exist. However, none are fully optimized for data science applications. Inconsistent naming and data conventions, uneven quality control, and lack of alignment between disease data and potential predictors pose barriers to robust modeling and analysis. To address this gap, we generated a unified dataset that integrates and implements quality checks of the data from numerous leading sources of COVID-19 epidemiological and environmental data. We use a globally consistent hierarchy of administrative units to facilitate analysis within and across countries. The dataset applies this unified hierarchy to align COVID-19 epidemiological data with a number of other data types relevant to understanding and predicting COVID-19 risk, including hydrometeorological data, air quality, information on COVID-19 control policies, vaccine data, and key demographic characteristics.


Asunto(s)
COVID-19 , Humanos , Contaminación del Aire , COVID-19/epidemiología , Pandemias , Ambiente
8.
Res Sq ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37034707

RESUMEN

Background: The study of the etiology of acute febrile illness (AFI) has historically been designed as a prevalence of pathogens detected from a case series. This strategy has an inherent unrealistic assumption that all pathogen detection allows for causal attribution, despite known asymptomatic carriage of the principal causes of acute febrile illness in most low- and middle-income countries (LMICs). We designed a semi-quantitative PCR in a modular format to detect bloodborne agents of acute febrile illness that encompassed common etiologies of AFI in the region, etiologies of recent epidemics, etiologies that require an immediate public health response and additional pathogens of unknown endemicity. We then designed a study that would delineate background levels of transmission in the community in the absence of symptoms to provide corrected estimates of attribution for the principal determinants of AFI. Methods: A case-control study of acute febrile illness in patients ten years or older seeking health care in Iquitos, Loreto, Peru, was planned. Upon enrollment, we will obtain blood, saliva, and mid-turbinate nasal swabs at enrollment with a follow-up visit on day 21-28 following enrollment to attain vital status and convalescent saliva and blood samples, as well as a questionnaire including clinical, socio-demographic, occupational, travel, and animal contact information for each participant. Whole blood samples are to be simultaneously tested for 32 pathogens using TaqMan array cards. Mid-turbinate samples will be tested for SARS-CoV-2, Influenza A and Influenza B. Conditional logistic regression models will be fitted treating case/control status as the outcome and with pathogen-specific sample positivity as predictors to attain estimates of attributable pathogen fractions for AFI. Discussion: The modular PCR platforms will allow for reporting of all primary results of respiratory samples within 72 hours and blood samples within one week, allowing for results to influence local medical practice and enable timely public health responses. The inclusion of controls will allow for a more accurate estimate of the importance of specific, prevalent pathogens as a cause of acute illness. Study Registration: Project 1791, Registro de Proyectos de Investigación en Salud Pública (PRISA), Instituto Nacional de Salud, Perú.

9.
BMC Public Health ; 23(1): 674, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041550

RESUMEN

BACKGROUND: The study of the etiology of acute febrile illness (AFI) has historically been designed as a prevalence of pathogens detected from a case series. This strategy has an inherent unrealistic assumption that all pathogen detection allows for causal attribution, despite known asymptomatic carriage of the principal causes of acute febrile illness in most low- and middle-income countries (LMICs). We designed a semi-quantitative PCR in a modular format to detect bloodborne agents of acute febrile illness that encompassed common etiologies of AFI in the region, etiologies of recent epidemics, etiologies that require an immediate public health response and additional pathogens of unknown endemicity. We then designed a study that would delineate background levels of transmission in the community in the absence of symptoms to provide corrected estimates of attribution for the principal determinants of AFI. METHODS: A case-control study of acute febrile illness in patients ten years or older seeking health care in Iquitos, Loreto, Peru, was planned. Upon enrollment, we will obtain blood, saliva, and mid-turbinate nasal swabs at enrollment with a follow-up visit on day 21-28 following enrollment to attain vital status and convalescent saliva and blood samples, as well as a questionnaire including clinical, socio-demographic, occupational, travel, and animal contact information for each participant. Whole blood samples are to be simultaneously tested for 32 pathogens using TaqMan array cards. Mid-turbinate samples will be tested for SARS-CoV-2, Influenza A and Influenza B. Conditional logistic regression models will be fitted treating case/control status as the outcome and with pathogen-specific sample positivity as predictors to attain estimates of attributable pathogen fractions for AFI. DISCUSSION: The modular PCR platforms will allow for reporting of all primary results of respiratory samples within 72 h and blood samples within one week, allowing for results to influence local medical practice and enable timely public health responses. The inclusion of controls will allow for a more accurate estimate of the importance of specific prevalent pathogens as a cause of acute illness. STUDY REGISTRATION: Project 1791, Registro de Proyectos de Investigación en Salud Pública (PRISA), Instituto Nacional de Salud, Perú.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , Perú , Gripe Humana/epidemiología , Estudios de Casos y Controles , SARS-CoV-2 , Fiebre/epidemiología , Reacción en Cadena de la Polimerasa , Instituciones de Salud , Prueba de COVID-19
10.
Geohealth ; 7(3): e2022GH000727, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36960326

RESUMEN

Brazil has been severely affected by the COVID-19 pandemic. Temperature and humidity have been purported as drivers of SARS-CoV-2 transmission, but no consensus has been reached in the literature regarding the relative roles of meteorology, governmental policy, and mobility on transmission in Brazil. We compiled data on meteorology, governmental policy, and mobility in Brazil's 26 states and one federal district from June 2020 to August 2021. Associations between these variables and the time-varying reproductive number (R t ) of SARS-CoV-2 were examined using generalized additive models fit to data from the entire 15-month period and several shorter, 3-month periods. Accumulated local effects and variable importance metrics were calculated to analyze the relationship between input variables and R t . We found that transmission is strongly influenced by unmeasured sources of between-state heterogeneity and the near-recent trajectory of the pandemic. Increased temperature generally was associated with decreased transmission and increased specific humidity with increased transmission. However, the impacts of meteorology, policy, and mobility on R t varied in direction, magnitude, and significance across our study period. This time variance could explain inconsistencies in the published literature to date. While meteorology weakly modulates SARS-CoV-2 transmission, daily or seasonal weather variations alone will not stave off future surges in COVID-19 cases in Brazil. Investigating how the roles of environmental factors and disease control interventions may vary with time should be a deliberate consideration of future research on the drivers of SARS-CoV-2 transmission.

11.
Lancet Glob Health ; 11(3): e373-e384, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36796984

RESUMEN

BACKGROUND: Diarrhoeal disease is a leading cause of childhood illness and death globally, and Shigella is a major aetiological contributor for which a vaccine might soon be available. The primary objective of this study was to model the spatiotemporal variation in paediatric Shigella infection and map its predicted prevalence across low-income and middle-income countries (LMICs). METHODS: Individual participant data for Shigella positivity in stool samples were sourced from multiple LMIC-based studies of children aged 59 months or younger. Covariates included household-level and participant-level factors ascertained by study investigators and environmental and hydrometeorological variables extracted from various data products at georeferenced child locations. Multivariate models were fitted and prevalence predictions obtained by syndrome and age stratum. FINDINGS: 20 studies from 23 countries (including locations in Central America and South America, sub-Saharan Africa, and south and southeast Asia) contributed 66 563 sample results. Age, symptom status, and study design contributed most to model performance followed by temperature, wind speed, relative humidity, and soil moisture. Probability of Shigella infection exceeded 20% when both precipitation and soil moisture were above average and had a 43% peak in uncomplicated diarrhoea cases at 33°C temperatures, above which it decreased. Compared with unimproved sanitation, improved sanitation decreased the odds of Shigella infection by 19% (odds ratio [OR]=0·81 [95% CI 0·76-0·86]) and open defecation decreased them by 18% (OR=0·82 [0·76-0·88]). INTERPRETATION: The distribution of Shigella is more sensitive to climatological factors, such as temperature, than previously recognised. Conditions in much of sub-Saharan Africa are particularly propitious for Shigella transmission, although hotspots also occur in South America and Central America, the Ganges-Brahmaputra Delta, and the island of New Guinea. These findings can inform prioritisation of populations for future vaccine trials and campaigns. FUNDING: NASA, National Institutes of Health-The National Institute of Allergy and Infectious Diseases, and Bill & Melinda Gates Foundation.


Asunto(s)
Disentería Bacilar , Niño , Humanos , Disentería Bacilar/epidemiología , Diarrea/epidemiología , Diarrea/etiología , África del Sur del Sahara , Temperatura , Composición Familiar , Salud Global
12.
Clin Infect Dis ; 76(3): e1054-e1061, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35748864

RESUMEN

BACKGROUND: There is a need to evaluate antibiotic use, duration of therapy, and stewardship in low- and middle-income countries to guide the development of appropriate stewardship programs that are global in scope and effectively decrease unnecessary antibiotic use. METHODS: We prospectively collected information on illness occurrence and antibiotic use from a cohort of 303 children. We evaluated the incidence, duration of therapy, and appropriateness of antibiotic prescriptions by 5 main antibiotic prescribers (physicians and nurses, pharmacists, nursing assistants, self-prescriptions, and neighbors or family members). RESULTS: Ninety percent of children received an antibiotic during follow-up, and on average, by the end of follow-up a child had spent 4.3% of their first 5 years of life on antibiotics. The most frequent prescribers were physicians/nurses (79.4%), followed by pharmacists (8.1%), self-prescriptions (6.8%), nursing assistants (3.7%), and family or neighbors (1.9%). Of the 3702 courses of antibiotics prescribed, 30.9% were done so for the occurrence of fever, 25.3% for diarrhea, 2.8% for acute lower respiratory disease, 2.7% for dysentery, and 38.2% for an undetermined illness. Courses exceeding the recommended duration were common for the principal diseases for which treatment was initiated, with 27.3% of courses exceeding the recommended length duration, representing a potential reduction in 13.2% of days on which this cohort spent on antibiotics. CONCLUSIONS: Stewardship programs should target medical personnel for a primary care stewardship program even in a context in which antibiotics are available to the public with little or no restrictions and appropriate duration should be emphasized in this training.


Asunto(s)
Antibacterianos , Personal de Salud , Humanos , Niño , Antibacterianos/uso terapéutico , Estudios de Cohortes , Perú , Prescripciones , Pautas de la Práctica en Medicina
13.
IJID Reg ; 6: 29-41, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36437857

RESUMEN

Background: The COVID-19 pandemic has caused societal disruption globally, and South America has been hit harder than other lower-income regions. This study modeled the effects of six weather variables on district-level SARS-CoV-2 reproduction numbers (Rt ) in three contiguous countries of tropical Andean South America (Colombia, Ecuador, and Peru), adjusting for environmental, policy, healthcare infrastructural and other factors. Methods: Daily time-series data on SARS-CoV-2 infections were sourced from the health authorities of the three countries at the smallest available administrative level. Rt values were calculated and merged by date and unit ID with variables from a unified COVID-19 dataset and other publicly available sources for May-December, 2020. Generalized additive models were fitted. Findings: Relative humidity and solar radiation were inversely associated with SARS-CoV-2 Rt . Days with radiation above 1000 kJ/m2 saw a 1.3% reduction in Rt , and those with humidity above 50% recorded a 0.9% reduction in Rt . Transmission was highest in densely populated districts, and lowest in districts with poor healthcare access and on days with lowest population mobility. Wind speed, temperature, region, aggregate government policy response, and population age structure had little impact. The fully adjusted model explained 4.3% of Rt variance. Interpretation: Dry atmospheric conditions of low humidity increase district-level SARS-CoV-2 reproduction numbers, while higher levels of solar radiation decrease district-level SARS-CoV-2 reproduction numbers - effects that are comparable in magnitude to population factors like lockdown compliance. Weather monitoring could be incorporated into disease surveillance and early warning systems in conjunction with more established risk indicators and surveillance measures. Funding: NASA's Group on Earth Observations Work Programme (16-GEO16-0047).

14.
Emerg Infect Dis ; 28(13): S34-S41, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36502419

RESUMEN

Existing acute febrile illness (AFI) surveillance systems can be leveraged to identify and characterize emerging pathogens, such as SARS-CoV-2, which causes COVID-19. The US Centers for Disease Control and Prevention collaborated with ministries of health and implementing partners in Belize, Ethiopia, Kenya, Liberia, and Peru to adapt AFI surveillance systems to generate COVID-19 response information. Staff at sentinel sites collected epidemiologic data from persons meeting AFI criteria and specimens for SARS-CoV-2 testing. A total of 5,501 patients with AFI were enrolled during March 2020-October 2021; >69% underwent SARS-CoV-2 testing. Percentage positivity for SARS-CoV-2 ranged from 4% (87/2,151, Kenya) to 19% (22/115, Ethiopia). We show SARS-CoV-2 testing was successfully integrated into AFI surveillance in 5 low- to middle-income countries to detect COVID-19 within AFI care-seeking populations. AFI surveillance systems can be used to build capacity to detect and respond to both emerging and endemic infectious disease threats.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Estados Unidos , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Prueba de COVID-19 , Fiebre/epidemiología
15.
Am J Trop Med Hyg ; 107(4): 754-765, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36096405

RESUMEN

Metabolic syndrome is a cluster of risk factors for cardiovascular disease afflicting more than 1 billion people worldwide and is increasingly being identified in younger age groups and in socioeconomically disadvantaged settings in the global south. Enteropathogen exposure and environmental enteropathy in infancy may contribute to metabolic syndrome by disrupting the metabolic profile in a way that is detectable in cardiometabolic markers later in childhood. A total of 217 subjects previously enrolled in a birth cohort in Amazonian Peru were monitored annually from ages 2 to 5 years. A total of 197 blood samples collected in later childhood were analyzed for 37 cardiometabolic biomarkers, including adipokines, apolipoproteins, cytokines, which were matched to extant early-life markers of enteropathy ascertained between birth and 2 years. Multivariate and multivariable regression models were fitted to test for associations, adjusting for confounders. Fecal and urinary markers of intestinal permeability and inflammation (myeloperoxidase, lactulose, and mannitol) measured in infancy were associated with later serum concentrations of soluble CD40-ligand, a proinflammatory cytokine correlated with adverse metabolic outcomes. Fecal myeloperoxidase was also associated with later levels of omentin-1. Enteric protozoa exposure showed stronger associations with later cardiometabolic markers than viruses, bacteria, and overall diarrheal episodes. Early-life enteropathy markers were associated with altered adipokine, apolipoprotein, and cytokine profiles later in childhood consistent with an adverse cardiometabolic disease risk profile in this cohort. Markers of intestinal permeability and inflammation measured in urine (lactulose, mannitol) and stool (myeloperoxidase, protozoal infections) during infancy may predict metabolic syndrome in adulthood.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Intestinales , Síndrome Metabólico , Adipoquinas , Apolipoproteínas , Biomarcadores/metabolismo , Cohorte de Nacimiento , Enfermedades Cardiovasculares/epidemiología , Preescolar , Citocinas , Humanos , Inflamación/complicaciones , Enfermedades Intestinales/metabolismo , Lactulosa/metabolismo , Ligandos , Manitol/metabolismo , Síndrome Metabólico/complicaciones , Síndrome Metabólico/epidemiología , Peroxidasa/metabolismo , Perú/epidemiología
16.
Front Pediatr ; 10: 804798, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252058

RESUMEN

Bifidobacterium longum subspecies detected in infant stool have been associated with numerous subsequent health outcomes and are potential early markers of deviation from healthy developmental trajectories. This analysis derived indicators of carriage and early colonization with B. infantis and B. longum and quantified their associations with a panel of early-life exposures and outcomes. In a sub-study nested within a multi-site birth cohort, extant stool samples from infants in Bangladesh, Pakistan and Tanzania were tested for presence and quantity of two Bifidobacterium longum subspecies. The results were matched to indicators of nutritional status, enteropathogen infection, histo-blood group antigens, vaccine response and feeding status and regression models were fitted to test for associations while adjusting for covariates. B. infantis was associated with lower quantity of and decreased odds of colonization with B. longum, and vice versa. Length at birth was associated with a 0.36 increase in log10 B. infantis and a 0.28 decrease in B. longum quantity at 1 month of age. B. infantis colonization was associated with fewer viral infections and small reductions in the risk of rotavirus and sapovirus infections, but not reduced overall diarrheal disease risk. No associations with vaccine responses, HBGAs or later nutritional status were identified. Suboptimal intrauterine growth and a shorter duration of exclusive breastfeeding may predispose infants to early intestinal colonization with the B. longum subspecies at the expense of B. infantis, thus denying them potential benefits of reduced enteric virus episodes.

17.
Geohealth ; 6(1): e2021GH000452, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35024531

RESUMEN

Diarrheal disease, still a major cause of childhood illness, is caused by numerous, diverse infectious microorganisms, which are differentially sensitive to environmental conditions. Enteropathogen-specific impacts of climate remain underexplored. Results from 15 studies that diagnosed enteropathogens in 64,788 stool samples from 20,760 children in 19 countries were combined. Infection status for 10 common enteropathogens-adenovirus, astrovirus, norovirus, rotavirus, sapovirus, Campylobacter, ETEC, Shigella, Cryptosporidium and Giardia-was matched by date with hydrometeorological variables from a global Earth observation dataset-precipitation and runoff volume, humidity, soil moisture, solar radiation, air pressure, temperature, and wind speed. Models were fitted for each pathogen, accounting for lags, nonlinearity, confounders, and threshold effects. Different variables showed complex, non-linear associations with infection risk varying in magnitude and direction depending on pathogen species. Rotavirus infection decreased markedly following increasing 7-day average temperatures-a relative risk of 0.76 (95% confidence interval: 0.69-0.85) above 28°C-while ETEC risk increased by almost half, 1.43 (1.36-1.50), in the 20-35°C range. Risk for all pathogens was highest following soil moistures in the upper range. Humidity was associated with increases in bacterial infections and decreases in most viral infections. Several virus species' risk increased following lower-than-average rainfall, while rotavirus and ETEC increased with heavier runoff. Temperature, soil moisture, and humidity are particularly influential parameters across all enteropathogens, likely impacting pathogen survival outside the host. Precipitation and runoff have divergent associations with different enteric viruses. These effects may engender shifts in the relative burden of diarrhea-causing agents as the global climate changes.

18.
Am J Trop Med Hyg ; 104(1): 372-381, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33146117

RESUMEN

Using previously validated microbial source tracking markers, we detected and quantified fecal contamination from avian species and avian exposure, dogs, and humans on household cooking tables and floors. The association among contamination, infrastructure, and socioeconomic covariates was assessed using simple and multiple ordinal logistic regressions. The presence of Campylobacter spp. in surface samples was linked to avian markers. Using molecular methods, animal feces were detected in 75.0% and human feces in 20.2% of 104 households. Floors were more contaminated than tables as detected by the avian marker Av4143, dog marker Bactcan, and human marker Bachum. Wood tables were consistently more contaminated than non-wood surfaces, specifically with the mitochondrial avian markers ND5 and CytB, fecal marker Av4143, and canine marker Bactcan. Final multivariable models with socioeconomic and infrastructure characteristics included as covariates indicate that detection of avian feces and avian exposure was associated with the presence of chickens, maternal age, and length of tenancy, whereas detection of human markers was associated with unimproved water source. Detection of Campylobacter in surface samples was associated with the avian fecal marker Av4143. We highlight the critical need to detect and measure the burden of animal fecal waste when evaluating household water, hygiene, and sanitation interventions, and the possibility of decreasing risk of exposure through the modification of surfaces to permit more effective household disinfection practices. Animals may be a more important source of household fecal contamination than humans in many low-resource settings, although interventions have historically focused almost exclusively on managing human waste.


Asunto(s)
Crianza de Animales Domésticos , Microbiología Ambiental/normas , Heces , Vivienda , Higiene , Saneamiento , Animales , Pollos , Perros , Monitoreo del Ambiente , Humanos , Propiedad , Perú , Microbiología del Agua , Contaminación del Agua , Abastecimiento de Agua
19.
Artículo en Inglés | MEDLINE | ID: mdl-33147841

RESUMEN

Diarrheal disease remains a major cause of childhood mortality and morbidity causing poor health and economic outcomes. In low-resource settings, young children are exposed to numerous risk factors for enteric pathogen transmission within their dwellings, though the relative importance of different transmission pathways varies by pathogen species. The objective of this analysis was to model associations between five household-level risk factors-water, sanitation, flooring, caregiver education, and crowding-and infection status for endemic enteric pathogens in children in five surveillance studies. Data were combined from 22 sites in which a total of 58,000 stool samples were tested for 16 specific enteropathogens using qPCR. Risk ratios for pathogen- and taxon-specific infection status were modeled using generalized linear models along with hazard ratios for all-cause diarrhea in proportional hazard models, with the five household-level variables as primary exposures adjusting for covariates. Improved drinking water sources conferred a 17% reduction in diarrhea risk; however, the direction of its association with particular pathogens was inconsistent. Improved sanitation was associated with a 9% reduction in diarrhea risk with protective effects across pathogen species and taxa of around 10-20% risk reduction. A 9% reduction in diarrhea risk was observed in subjects with covered floors, which were also associated with decreases in risk for zoonotic enteropathogens. Caregiver education and household crowding showed more modest, inconclusive results. Combining data from diverse sites, this analysis quantified associations between five household-level exposures on risk of specific enteric infections, effects which differed by pathogen species but were broadly consistent with hypothesized transmission mechanisms. Such estimates may be used within expanded water, sanitation, and hygiene (WASH) programs to target interventions to the particular pathogen profiles of individual communities and prioritize resources.


Asunto(s)
Diarrea , Vigilancia de Guardia , Bangladesh/epidemiología , Niño , Preescolar , Diarrea/epidemiología , Humanos , Higiene , Lactante , Recién Nacido , Saneamiento
20.
Sci Total Environ ; 743: 140531, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32758812

RESUMEN

The performance of eight microbial source tracking (MST) markers was evaluated in a low-resource, tropical community located in Iquitos, Peru. Fecal samples from humans, dogs, cats, rats, goats, buffalos, guinea-pigs, chickens, ducks, pigeons, and parrots were collected (n = 117). All samples were tested with human (BacHum, HF183-Taqman), dog (BactCan), pig (Pig-2-Bac), and avian (LA35, Av4143, ND5, cytB) markers using quantitative PCR (qPCR). Internal validity metrics were calculated using all animal fecal samples, as well as animal fecal samples contextually relevant for the Peruvian Amazon. Overall, Pig-2-Bac performed best, with 100% sensitivity and 88.5% specificity to detect the correct fecal source. Human-associated markers showed a sensitivity of 80.0% and 76.7%, and specificity of 66.2% and 67.6%. When limiting the analysis to contextually relevant animal fecal samples for the Peruvian Amazon, Av143 surpassed cytB with 95.7% sensitivity and 81.8% specificity. BactCan demonstrated 100% sensitivity and 47.4% specificity. The gene copy number detected by BacHum and HF183-Taqman were positively correlated (Pearson's correlation coefficient: 0.785), as well as avian markers cytB with Av4143 (Pearson's correlation coefficient: 0.508) and nd5 (Pearson's correlation coefficient: 0.949). These findings suggest that markers such as Av4143, Pig2Bac, cytb and BacHum have acceptable performance to be impactful in source attribution studies for zoonotic enteric disease transmission in this and similar low-resource communities.


Asunto(s)
Pollos , Monitoreo del Ambiente , Animales , Biomarcadores , Gatos , Perros , Heces , Cobayas , Humanos , Perú , Ratas , Microbiología del Agua , Contaminación del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...