Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Biomed Pharmacother ; 160: 114310, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36731341

RESUMEN

BACKGROUND: Elevated myocardial intracellular sodium ([Na+]i) was shown to decrease mitochondrial calcium ([Ca2+]MITO) via mitochondrial sodium/calcium exchanger (NCXMITO), resulting in decreased mitochondrial ATP synthesis. The sodium-glucose co-transporter 2 inhibitor (SGLT2i) ertugliflozin (ERTU) improved energetic deficit and contractile dysfunction in a mouse model of high fat, high sucrose (HFHS) diet-induced diabetic cardiomyopathy (DCMP). As SGLT2is were shown to lower [Na+]i in isolated cardiomyocytes, we hypothesized that energetic improvement in DCMP is at least partially mediated by a decrease in abnormally elevated myocardial [Na+]i. METHODS: Forty-two eight-week-old male C57BL/6J mice were fed a control or HFHS diet for six months. In the last month, a subgroup of HFHS-fed mice was treated with ERTU. At the end of the study, left ventricular contractile function and energetics were measured simultaneously in isolated beating hearts by 31P NMR (Nuclear Magnetic Resonance) spectroscopy. A subset of untreated HFHS hearts was perfused with vehicle vs. CGP 37157, an NCXMITO inhibitor. Myocardial [Na+]i was measured by 23Na NMR spectroscopy. RESULTS: HFHS hearts showed diastolic dysfunction, decreased contractile reserve, and impaired energetics as reflected by decreased phosphocreatine (PCr) and PCr/ATP ratio. Myocardial [Na+]i was elevated > 2-fold in HFHS (vs. control diet). ERTU reversed the impairments in HFHS hearts to levels similar to or better than control diet and decreased myocardial [Na+]i to control levels. CGP 37157 normalized the PCr/ATP ratio in HFHS hearts. CONCLUSIONS: Elevated myocardial [Na+]i contributes to mitochondrial and contractile dysfunction in DCMP. Targeting myocardial [Na+]i and/or NCXMITO may be an effective strategy in DCMP and other forms of heart disease associated with elevated myocardial [Na+]i.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Ratones , Masculino , Animales , Cardiomiopatías Diabéticas/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Sodio , Calcio , Desoxicitidina Monofosfato , Contracción Miocárdica , Ratones Endogámicos C57BL , Miocardio , Adenosina Trifosfato
2.
J Am Heart Assoc ; 10(13): e019995, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34169737

RESUMEN

Background Inhibitors of the sodium-glucose linked transporter 2 improve cardiovascular outcomes in patients with or without type 2 diabetes mellitus, but the effects on cardiac energetics and mitochondrial function are unknown. We assessed the effects of sodium-glucose linked transporter 2 inhibition on mitochondrial function, high-energy phosphates, and genes encoding mitochondrial proteins in hearts of mice with and without diet-induced diabetic cardiomyopathy. Methods and Results Mice fed a control diet or a high-fat, high-sucrose diet received ertugliflozin mixed with the diet (0.5 mg/g of diet) for 4 months. Isolated mitochondria were assessed for functional capacity. High-energy phosphates were assessed by 31P nuclear magnetic resonance spectroscopy concurrently with contractile performance in isolated beating hearts. The high-fat, high-sucrose diet caused myocardial hypertrophy, diastolic dysfunction, mitochondrial dysfunction, and impaired energetic response, all of which were prevented by ertugliflozin. With both diets, ertugliflozin caused supernormalization of contractile reserve, as measured by rate×pressure product at high work demand. Likewise, the myocardial gene sets most enriched by ertugliflozin were for oxidative phosphorylation and fatty acid metabolism, both of which were enriched independent of diet. Conclusions Ertugliflozin not only prevented high-fat, high-sucrose-induced pathological cardiac remodeling, but improved contractile reserve and induced the expression of oxidative phosphorylation and fatty acid metabolism gene sets independent of diabetic status. These effects of sodium-glucose linked transporter 2 inhibition on cardiac energetics and metabolism may contribute to improved structure and function in cardiac diseases associated with mitochondrial dysfunction, such as heart failure.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cardiomiopatías Diabéticas/prevención & control , Metabolismo Energético/efectos de los fármacos , Hipertrofia Ventricular Izquierda/prevención & control , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Disfunción Ventricular Izquierda/prevención & control , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/fisiopatología , Dieta Alta en Grasa , Sacarosa en la Dieta , Metabolismo Energético/genética , Regulación de la Expresión Génica , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
3.
JACC Basic Transl Sci ; 5(9): 916-927, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33015414

RESUMEN

Mice with obesity and metabolic heart disease (MHD) due to a high-fat, high-sucrose diet were treated with placebo, a clinically relevant dose of sacubitril (SAC)/valsartan (VAL), or an equivalent dose of VAL for 4 months. There were striking differences between SAC/VAL and VAL with regard to: 1) diastolic dysfunction; 2) interstitial fibrosis; and to a lesser degree; 3) oxidative stress-all of which were more favorably affected by SAC/VAL. SAC/VAL and VAL similarly attenuated myocardial hypertrophy and improved myocardial energetics. In mice with obesity-related MHD, neprilysin inhibition exerts favorable effects on diastolic function.

4.
Circulation ; 142(25): 2459-2469, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33076678

RESUMEN

BACKGROUND: SERCA [sarco(endo)plasmic reticulum calcium ATPase] is regulated by oxidative posttranslational modifications at cysteine 674 (C674). Because sarcoplasmic reticulum (SR) calcium has been shown to play a critical role in mediating mitochondrial dysfunction in response to reactive oxygen species, we hypothesized that SERCA oxidation at C674 would modulate the effects of reactive oxygen species on mitochondrial calcium and mitochondria-dependent apoptosis in cardiac myocytes. METHODS: Adult rat ventricular myocytes expressing wild-type SERCA2b or a redox-insensitive mutant in which C674 is replaced by serine (C674S) were exposed to H2O2 (100 µmol/Lµ). Free mitochondrial calcium concentration was measured in adult rat ventricular myocytes with a genetically targeted fluorescent probe, and SR calcium content was assessed by measuring caffeine-stimulated release. Mice with heterozygous knock-in of the SERCA C674S mutation were subjected to chronic ascending aortic constriction. RESULTS: In adult rat ventricular myocytes expressing wild-type SERCA, H2O2 caused a 25% increase in mitochondrial calcium concentration that was associated with a 50% decrease in SR calcium content, both of which were prevented by the ryanodine receptor inhibitor tetracaine. In cells expressing the C674S mutant, basal SR calcium content was decreased by 31% and the H2O2-stimulated rise in mitochondrial calcium concentration was attenuated by 40%. In wild-type cells, H2O2 caused cytochrome c release and apoptosis, both of which were prevented in C674S-expressing cells. In myocytes from SERCA knock-in mice, basal SERCA activity and SR calcium content were decreased. To test the effect of C674 oxidation on apoptosis in vivo, SERCA knock-in mice were subjected to chronic ascending aortic constriction. In wild-type mice, ascending aortic constriction caused myocyte apoptosis, LV dilation, and systolic failure, all of which were inhibited in SERCA knock-in mice. CONCLUSIONS: Redox activation of SERCA C674 regulates basal SR calcium content, thereby mediating the pathologic reactive oxygen species-stimulated rise in mitochondrial calcium required for myocyte apoptosis and myocardial failure.


Asunto(s)
Apoptosis , Calcio/metabolismo , Insuficiencia Cardíaca/enzimología , Mitocondrias Cardíacas/enzimología , Miocitos Cardíacos/enzimología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Apoptosis/efectos de los fármacos , Señalización del Calcio , Células Cultivadas , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Peróxido de Hidrógeno/toxicidad , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Mutación , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Oxidantes/toxicidad , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Función Ventricular Izquierda , Remodelación Ventricular
5.
Sci Rep ; 10(1): 11209, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641756

RESUMEN

Multiplexed imaging is essential for the evaluation of substrate utilization in metabolically active organs, such as the heart and brown adipose tissue (BAT), where substrate preference changes in pathophysiologic states. Optical imaging provides a useful platform because of its low cost, high throughput and intrinsic ability to perform composite readouts. However, the paucity of probes available for in vivo use has limited optical methods to image substrate metabolism. Here, we present a novel near-infrared (NIR) free fatty acid (FFA) tracer suitable for in vivo imaging of deep tissues such as the heart. Using click chemistry, Alexa Fluor 647 DIBO Alkyne was conjugated to palmitic acid. Mice injected with 0.05 nmol/g bodyweight of the conjugate (AlexaFFA) were subjected to conditions known to increase FFA uptake in the heart (fasting) and BAT [cold exposure and injection with the ß3 adrenergic agonist CL 316, 243(CL)]. Organs were subsequently imaged both ex vivo and in vivo to quantify AlexaFFA uptake. The blood kinetics of AlexaFFA followed a two-compartment model with an initial fast compartment half-life of 0.14 h and a subsequent slow compartment half-life of 5.2 h, consistent with reversible protein binding. Ex vivo fluorescence imaging after overnight cold exposure and fasting produced a significant increase in AlexaFFA uptake in the heart (58 ± 12%) and BAT (278 ± 19%) compared to warm/fed animals. In vivo imaging of the heart and BAT after exposure to CL and fasting showed a significant increase in AlexaFFA uptake in the heart (48 ± 20%) and BAT (40 ± 10%) compared to saline-injected/fed mice. We present a novel near-infrared FFA tracer, AlexaFFA, that is suitable for in vivo quantification of FFA metabolism and can be applied in the context of a low cost, high throughput, and multiplexed optical imaging platform.


Asunto(s)
Tejido Adiposo Pardo/diagnóstico por imagen , Colorantes Fluorescentes/administración & dosificación , Corazón/diagnóstico por imagen , Microscopía Intravital/métodos , Imagen Óptica/métodos , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Animales , Línea Celular , Dioxoles/farmacología , Ácidos Grasos no Esterificados/metabolismo , Femenino , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacocinética , Fluorodesoxiglucosa F18 , Semivida , Corazón/efectos de los fármacos , Inyecciones Intravenosas , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Microscopía Fluorescente , Imagen Molecular/métodos , Miocardio/metabolismo , Ratas
6.
NMR Biomed ; 33(5): e4258, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32066202

RESUMEN

Metabolic heart disease (MHD), which is strongly associated with heart failure with preserved ejection fraction, is characterized by reduced mitochondrial energy production and contractile performance. In this study, we tested the hypothesis that an acute increase in ATP synthesis, via short chain fatty acid (butyrate) perfusion, restores contractile function in MHD. Isolated hearts of mice with MHD due to consumption of a high fat high sucrose (HFHS) diet or on a control diet (CD) for 4 months were studied using 31 P NMR spectroscopy to measure high energy phosphates and ATP synthesis rates during increased work demand. At baseline, HFHS hearts had increased ADP and decreased free energy of ATP hydrolysis (ΔG~ATP ), although contractile function was similar between the two groups. At high work demand, the ATP synthesis rate in HFHS hearts was reduced by over 50%. Unlike CD hearts, HFHS hearts did not increase contractile function at high work demand, indicating a lack of contractile reserve. However, acutely supplementing HFHS hearts with 4mM butyrate normalized ATP synthesis, ADP, ΔG~ATP and contractile reserve. Thus, acute reversal of depressed mitochondrial ATP production improves contractile dysfunction in MHD. These findings suggest that energy starvation may be a reversible cause of myocardial dysfunction in MHD, and opens new therapeutic opportunities.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/biosíntesis , Butiratos/farmacología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Metabólicas/metabolismo , Mitocondrias Cardíacas/metabolismo , Contracción Miocárdica/efectos de los fármacos , Animales , Enfermedades Cardiovasculares/diagnóstico por imagen , Enfermedades Cardiovasculares/fisiopatología , Metabolismo Energético/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Hidrólisis , Espectroscopía de Resonancia Magnética , Masculino , Enfermedades Metabólicas/diagnóstico por imagen , Enfermedades Metabólicas/fisiopatología , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/efectos de los fármacos , Termodinámica
7.
Circulation ; 140(14): 1205-1216, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31769940

RESUMEN

Mitochondria have emerged as a central factor in the pathogenesis and progression of heart failure, and other cardiovascular diseases, as well, but no therapies are available to treat mitochondrial dysfunction. The National Heart, Lung, and Blood Institute convened a group of leading experts in heart failure, cardiovascular diseases, and mitochondria research in August 2018. These experts reviewed the current state of science and identified key gaps and opportunities in basic, translational, and clinical research focusing on the potential of mitochondria-based therapeutic strategies in heart failure. The workshop provided short- and long-term recommendations for moving the field toward clinical strategies for the prevention and treatment of heart failure and cardiovascular diseases by using mitochondria-based approaches.


Asunto(s)
Sistema Cardiovascular , Educación/métodos , Insuficiencia Cardíaca/terapia , Mitocondrias/fisiología , National Heart, Lung, and Blood Institute (U.S.) , Informe de Investigación , Investigación Biomédica/métodos , Investigación Biomédica/tendencias , Sistema Cardiovascular/patología , Educación/tendencias , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Humanos , National Heart, Lung, and Blood Institute (U.S.)/tendencias , Informe de Investigación/tendencias , Investigación Biomédica Traslacional/métodos , Investigación Biomédica Traslacional/tendencias , Estados Unidos/epidemiología
8.
Int J Biochem Cell Biol ; 114: 105569, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31299273

RESUMEN

Calcium (Ca2+), an important second messenger, regulates many cellular activities and varies spatiotemporally within the cell. Conventional methods to monitor Ca2+ changes, such as synthetic Ca2+ indicators, are not targetable, while genetically encoded Ca2+ indicators (GECI) can be precisely directed to cellular compartments. GECIs are chimeric proteins composed of calmodulin (or other proteins that change conformation on Ca2+ binding) coupled with two fluorescent proteins that come closer together after an increase in [Ca2+], and enhance Förster resonance energy transfer (FRET) that allows for ratiometric [Ca2+] assessment. Here, adult rat ventricular myocytes were transfected with specifically targeted calmodulin-based GECIs and Ca2+ responses to a physiological stimulus, norepinephrine (NE, 10 µM), were observed in a) sarcoplasmic reticulum (SR), b) mitochondria, c) the space between the mitochondria and SR, termed the Mitochondria Associated Membrane space (MAM) and d) cytosol for 10 min after stimulation. In SR and mitochondria, NE increased the [Ca2+] ratio by 17% and by 8%, respectively. In the MAM the [Ca2+] ratio decreased by 16%, while in cytosol [Ca2+] remained unchanged. In conclusion, adrenergic stimulation causes distinct responses in the cardiomyocyte SR, mitochondria and MAM. Additionally, our work provides a toolkit-update for targeted [Ca2+] measurements in multiple cellular compartments.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos/metabolismo , Animales , Masculino , Miocitos Cardíacos/citología , Ratas , Ratas Sprague-Dawley
9.
Antioxid Redox Signal ; 31(7): 539-549, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31088291

RESUMEN

Aims: Metabolic syndrome is associated with metabolic heart disease (MHD) that is characterized by left ventricular (LV) hypertrophy, interstitial fibrosis, contractile dysfunction, and mitochondrial dysfunction. Overexpression of catalase in mitochondria (transgenic expression of catalase targeted to the mitochondria [mCAT]) prevents the structural and functional features of MHD caused by a high-fat, high-sucrose (HFHS) diet for ≥4 months. However, it is unclear whether the effect of mCAT is due to prevention of reactive oxygen species (ROS)-mediated cardiac remodeling, a direct effect on mitochondrial function, or both. To address this question, we measured myocardial function and energetics in mice, with or without mCAT, after 1 month of HFHS, before the development of cardiac structural remodeling. Results: HFHS diet for 1 month had no effect on body weight, heart weight, LV structure, myocyte size, or interstitial fibrosis. Isolated cardiac mitochondria from HFHS-fed mice produced 2.2- to 3.8-fold more H2O2, and 16%-29% less adenosine triphosphate (ATP). In isolated beating hearts from HFHS-fed mice, [phosphocreatine (PCr)] and the free energy available for ATP hydrolysis (ΔG∼ATP) were decreased, and they failed to increase with work demands. Overexpression of mCAT normalized ROS and ATP production in isolated mitochondria, and it corrected myocardial [PCr] and ΔG∼ATP in the beating heart. Innovation: This is the first demonstration that in MHD, mitochondrial ROS mediate energetic dysfunction that is sufficient to impair contractile function. Conclusion: ROS produced and acting in the mitochondria impair myocardial energetics, leading to slowed relaxation and decreased contractile reserve. These effects precede structural remodeling and are corrected by mCAT, indicating that ROS-mediated energetic impairment, per se, is sufficient to cause contractile dysfunction in MHD.


Asunto(s)
Metabolismo Energético , Cardiopatías/metabolismo , Enfermedades Metabólicas/metabolismo , Mitocondrias Cardíacas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Biomarcadores , Susceptibilidad a Enfermedades , Ecocardiografía , Fibrosis , Cardiopatías/diagnóstico por imagen , Cardiopatías/etiología , Cardiopatías/patología , Peróxido de Hidrógeno/metabolismo , Inmunohistoquímica , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/patología , Ratones , Contracción Miocárdica , Miocardio/metabolismo , Miocardio/patología
10.
J Am Heart Assoc ; 8(7): e011100, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30929550

RESUMEN

Background Obesity is a precursor to heart failure with preserved ejection fraction. Biomarkers that identify preclinical metabolic heart disease ( MHD ) in young obese patients would help identify high-risk individuals for heart failure prevention strategies. We assessed the predictive value of GAL3 (galectin-3), FSTL3 (follistatin-like 3 peptide), and NT-proBNP (N-terminal pro-B-type natriuretic peptide) to identify stage B MHD in young obese participants free of clinically evident cardiovascular disease. Methods and Results Asymptomatic obese patients (n=250) and non-obese controls (n=21) underwent echocardiographic cardiac phenotyping. Obese patients were classified as MHD positive ( MHD - POS ; n=94) if they had abnormal diastolic function or left ventricular hypertrophy and had estimated pulmonary artery systolic pressure ≥35 mm Hg. Obese patients without such abnormalities were classified as MHD negative (MHD-NEG; n=52). Serum biomarkers timed with echocardiography. MHD - POS and MHD-NEG individuals were similarly obese, but MHD - POS patients were older, with more diabetes mellitus and metabolic syndrome. Right ventricular coupling was worse in MHD - POS patients ( P<0.001). GAL 3 levels were higher in MHD - POS versus MHD -NEG patients (7.7±2.3 versus 6.3±1.9 ng/mL, respectively; P<0.001). Both GAL 3 and FSTL 3 levels correlated with diastolic dysfunction and increased pulmonary artery systolic pressure but not with left ventricular mass. In multivariate models including all 3 biomarkers, only GAL 3 remained associated with MHD (odds ratio: 1.30; 95% CI , 1.01-1.68; P=0.04). Conclusions In young obese individuals without known cardiovascular disease, GAL 3 is associated with the presence of preclinical MHD . GAL 3 may be useful in screening for preclinical MHD and identifying individuals with increased risk of progression to obesity-related heart failure with preserved ejection fraction.


Asunto(s)
Galectina 3/metabolismo , Insuficiencia Cardíaca/diagnóstico , Hipertensión Pulmonar/diagnóstico , Enfermedades Metabólicas/diagnóstico , Obesidad/complicaciones , Adulto , Biomarcadores/metabolismo , Proteínas Sanguíneas , Estudios de Casos y Controles , Ecocardiografía , Femenino , Proteínas Relacionadas con la Folistatina/metabolismo , Galectinas , Insuficiencia Cardíaca/fisiopatología , Hemodinámica/fisiología , Humanos , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Izquierda/diagnóstico , Masculino , Enfermedades Metabólicas/fisiopatología , Persona de Mediana Edad , Péptido Natriurético Encefálico/metabolismo , Obesidad/fisiopatología , Fragmentos de Péptidos/metabolismo
11.
Shock ; 52(1): 52-60, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30102640

RESUMEN

Mice challenged with lipopolysaccharide develop cardiomyopathy in a sex and redox-dependent fashion. Here we extended these studies to the cecal ligation and puncture (CLP) model.We compared male and female FVB mice (wild type, WT) and transgenic littermates overexpressing myocardial catalase (CAT). CLP induced 100% mortality within 4 days, with similar mortality rates in male and female WT and CAT mice. 24 h after CLP, isolated (Langendorff) perfused hearts showed depressed contractility in WT male mice, but not in male CAT or female WT and CAT mice. In WT male mice, CLP induced a depression of cardiomyocyte sarcomere shortening (ΔSS) and calcium transients (ΔCai), and the inhibition of the sarcoplasmic reticulum Ca ATPase (SERCA). These deficits were associated with overexpression of NADPH-dependent oxidase (NOX)-1, NOX-2, and cyclooxygenase 2 (COX-2), and were partially prevented in male CAT mice. Female WT mice showed unchanged ΔSS, ΔCai, and SERCA function after CLP. At baseline, female WT mice showed partially depressed ΔSS, ΔCai, and SERCA function, as compared with male WT mice, which were associated with NOX-1 overexpression and were prevented in CAT female mice.In conclusion, in male WT mice, septic shock induces myocardial NOX-1, NOX-2, and COX-2, and redox-dependent dysregulation of myocardial Ca transporters. Female WT mice are resistant to CLP-induced cardiomyopathy, despite increased NOX-1 and COX-2 expression, suggesting increased antioxidant capacity. Female resistance occurred in association with NOX-1 overexpression and signs of increased oxidative signaling at baseline, indicating the presence of a protective myocardial redox hormesis mechanism.


Asunto(s)
Hormesis/fisiología , Miocardio/metabolismo , Miocardio/patología , Sepsis/metabolismo , Sepsis/patología , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Catalasa/metabolismo , Ciego/lesiones , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Femenino , Ligadura/efectos adversos , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , NADPH Oxidasa 1/metabolismo , NADPH Oxidasa 2/metabolismo , Punciones/efectos adversos , Sarcómeros/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
12.
Am J Physiol Endocrinol Metab ; 316(2): E168-E177, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30576243

RESUMEN

Obesity, particularly visceral adiposity, has been linked to mitochondrial dysfunction and increased oxidative stress, which have been suggested as mechanisms of insulin resistance. The mechanism(s) behind this remains incompletely understood. In this study, we hypothesized that mitochondrial complex II dysfunction plays a role in impaired insulin sensitivity in visceral adipose tissue of subjects with obesity. We obtained subcutaneous and visceral adipose tissue biopsies from 43 subjects with obesity (body mass index ≥ 30 kg/m2) during planned bariatric surgery. Compared with subcutaneous adipose tissue, visceral adipose tissue exhibited decreased complex II activity, which was restored with the reducing agent dithiothreitol (5 mM) ( P < 0.01). A biotin switch assay identified that cysteine oxidative posttranslational modifications (OPTM) in complex II subunit A (succinate dehydrogenase A) were increased in visceral vs. subcutaneous fat ( P < 0.05). Insulin treatment (100 nM) stimulated complex II activity in subcutaneous fat ( P < 0.05). In contrast, insulin treatment of visceral fat led to a decrease in complex II activity ( P < 0.01), which was restored with addition of the mitochondria-specific oxidant scavenger mito-TEMPO (10 µM). In a cohort of 10 subjects with severe obesity, surgical weight loss decreased OPTM and restored complex II activity, exclusively in the visceral depot. Mitochondrial complex II may be an unrecognized and novel mediator of insulin resistance associated with visceral adiposity. The activity of complex II is improved by weight loss, which may contribute to metabolic improvements associated with bariatric surgery.


Asunto(s)
Complejo II de Transporte de Electrones/metabolismo , Resistencia a la Insulina , Grasa Intraabdominal/metabolismo , Obesidad/metabolismo , Procesamiento Proteico-Postraduccional , Adulto , Cirugía Bariátrica , Cisteína , Femenino , Humanos , Hipoglucemiantes/farmacología , Insulina/farmacología , Grasa Intraabdominal/efectos de los fármacos , Masculino , Persona de Mediana Edad , Obesidad/cirugía , Compuestos Organofosforados/farmacología , Oxidación-Reducción , Piperidinas/farmacología , Grasa Subcutánea/efectos de los fármacos , Grasa Subcutánea/metabolismo
13.
Circ Cardiovasc Imaging ; 11(3): e007007, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29555834

RESUMEN

BACKGROUND: Substrate utilization in tissues with high energetic requirements could play an important role in cardiometabolic disease. Current techniques to assess energetics are limited by high cost, low throughput, and the inability to resolve multiple readouts simultaneously. Consequently, we aimed to develop a multiplexed optical imaging platform to simultaneously assess energetics in multiple organs in a high throughput fashion. METHODS AND RESULTS: The detection of 18F-Fluordeoxyglucose uptake via Cerenkov luminescence and free fatty acid uptake with a fluorescent C16 free fatty acid was tested. Simultaneous uptake of these agents was measured in the myocardium, brown/white adipose tissue, and skeletal muscle in mice with/without thoracic aortic banding. Within 5 weeks of thoracic aortic banding, mice developed left ventricular hypertrophy and brown adipose tissue activation with upregulation of ß3AR (ß3 adrenergic receptors) and increased natriuretic peptide receptor ratio. Imaging of brown adipose tissue 15 weeks post thoracic aortic banding revealed an increase in glucose (P<0.01) and free fatty acid (P<0.001) uptake versus controls and an increase in uncoupling protein-1 (P<0.01). Similar but less robust changes were seen in skeletal muscle, while substrate uptake in white adipose tissue remained unchanged. Myocardial glucose uptake was increased post-thoracic aortic banding but free fatty acid uptake trended to decrease. CONCLUSIONS: A multiplexed optical imaging technique is presented that allows substrate uptake to be simultaneously quantified in multiple tissues in a high throughput manner. The activation of brown adipose tissue occurs early in the onset of left ventricular hypertrophy, which produces tissue-specific changes in substrate uptake that may play a role in the systemic response to cardiac pressure overload.


Asunto(s)
Tejido Adiposo Pardo/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/diagnóstico , Imagen por Resonancia Cinemagnética/métodos , Tomografía de Emisión de Positrones/métodos , Tejido Adiposo Pardo/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Fluorodesoxiglucosa F18/farmacología , Ratones , Ratones Endogámicos C57BL , Fenotipo , Radiofármacos/farmacología
14.
J Mol Cell Cardiol ; 116: 106-114, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29409987

RESUMEN

Metabolic syndrome is a cluster of obesity-related metabolic abnormalities that lead to metabolic heart disease (MHD) with left ventricular pump dysfunction. Although MHD is thought to be associated with myocardial energetic deficiency, two key questions have not been answered. First, it is not known whether there is a sufficient energy deficit to contribute to pump dysfunction. Second, the basis for the energy deficit is not clear. To address these questions, mice were fed a high fat, high sucrose (HFHS) 'Western' diet to recapitulate the MHD phenotype. In isolated beating hearts, we used 31P NMR spectroscopy with magnetization transfer to determine a) the concentrations of high energy phosphates ([ATP], [ADP], [PCr]), b) the free energy of ATP hydrolysis (∆G~ATP), c) the rate of ATP production and d) flux through the creatine kinase (CK) reaction. At the lowest workload, the diastolic pressure-volume relationship was shifted upward in HFHS hearts, indicative of diastolic dysfunction, whereas systolic function was preserved. At this workload, the rate of ATP synthesis was decreased in HFHS hearts, and was associated with decreases in both [PCr] and ∆G~ATP. Higher work demands unmasked the inability of HFHS hearts to increase systolic function and led to a further decrease in ∆G~ATP to a level that is not sufficient to maintain normal function of sarcoplasmic Ca2+-ATPase (SERCA). While [ATP] was preserved at all work demands in HFHS hearts, the progressive increase in [ADP] led to a decrease in ∆G~ATP with increased work demands. Surprisingly, CK flux, CK activity and total creatine were normal in HFHS hearts. These findings differ from dilated cardiomyopathy, in which the energetic deficiency is associated with decreases in CK flux, CK activity and total creatine. Thus, in HFHS-fed mice with MHD there is a distinct metabolic phenotype of the heart characterized by a decrease in ATP production that leads to a functionally-important energetic deficiency and an elevation of [ADP], with preservation of CK flux.


Asunto(s)
Adenosina Trifosfato/metabolismo , Cardiopatías/metabolismo , Cardiopatías/fisiopatología , Contracción Miocárdica , Animales , Peso Corporal , Creatina Quinasa/metabolismo , Diástole , Dieta Alta en Grasa , Sacarosa en la Dieta , Metabolismo Energético , Hidrólisis , Espectroscopía de Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Tamaño de los Órganos , Perfusión
15.
Am J Cardiovasc Drugs ; 18(1): 25-36, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29080984

RESUMEN

Preparations from Crataegus (hawthorn) have a long history in the treatment of heart failure. WS 1442 is a dry extract from hawthorn leaves with flowers (4-6.6:1), extraction solvent of ethanol 45% (w/w), adjusted to 17.3-20.1% of oligomeric procyanidins. Nonclinical studies show that WS 1442 has positive inotropic and antiarrhythmic properties and protects the myocardium from ischemic damage, reperfusion injury, and hypertension-related hypertrophy, improves endothelial functions such as NO synthesis, and delays endothelial senescence. Randomized, controlled trials in patients with heart failure have demonstrated that the herbal medicinal product increases functional capacity, alleviates disabling symptoms, and improves health-related quality of life, all of which have become important targets of heart failure therapy according to current disease management guidelines. Clinical trials (including a 2-year mortality study with polypharmacy and > 1300 patients exposed) and post-marketing surveillance studies have shown that WS 1442 has a very favorable safety profile both as monotherapy and as add-on therapy, where no drug interactions have been observed. No specific adverse reactions to WS 1442 are known to date. WS 1442 may thus help to close the therapeutic gap between systolic and diastolic heart failure for which evidence of efficacy for other cardioactive drugs is sparse. Scientific evidence shows that WS 1442 is safe and has a beneficial effect in patients with heart failure corresponding to New York Heart Association classes II or III. The benefit-risk assessment for WS 1442 is therefore positive.


Asunto(s)
Medicina Basada en la Evidencia/métodos , Flavonoides/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Fitoterapia/métodos , Extractos Vegetales/uso terapéutico , Cardiotónicos/efectos adversos , Cardiotónicos/uso terapéutico , Crataegus/efectos adversos , Flavonoides/efectos adversos , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/mortalidad , Humanos , Mortalidad/tendencias , Estudios Multicéntricos como Asunto/métodos , Fitoterapia/efectos adversos , Extractos Vegetales/efectos adversos , Medición de Riesgo
16.
Obesity (Silver Spring) ; 25(9): 1516-1522, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28737258

RESUMEN

OBJECTIVE: Metabolic syndrome (MetS) can lead to myocardial fibrosis, diastolic dysfunction, and eventual heart failure. This study evaluated alterations in myocardial microstructure in people with MetS by using a novel algorithm to characterize ultrasonic signal intensity variation. METHODS: Among 254 participants without existing cardiovascular disease (mean age 42 ± 11 years, 75% women), there were 162 with MetS, 47 with obesity without MetS, and 45 nonobese controls. Standard echocardiography was performed, and a novel validated computational algorithm was used to investigate myocardial microstructure based on sonographic signal intensity and distribution. The signal intensity coefficient (SIC [left ventricular microstructure]) was examined. RESULTS: The SIC was significantly higher in people with MetS compared with people with (P < 0.001) and without obesity (P = 0.04), even after adjustment for age, sex, body mass index, hypertension, diabetes mellitus, and the ratio of triglyceride (TG) to high-density lipoprotein (HDL) cholesterol (P < 0.05 for all). Clinical correlates of SIC included TG concentrations (r = 0.21, P = 0.0007) and the TG/HDL ratio (r = 0.2, P = 0.001). CONCLUSIONS: This study's findings suggest that preclinical MetS and dyslipidemia in particular are associated with altered myocardial signal intensity variation. Future studies are needed to determine whether the SIC may help detect subclinical diseases in people with metabolic disease, with the ultimate goal of targeting preventive efforts.


Asunto(s)
Síndrome Metabólico/patología , Miocardio/ultraestructura , Adulto , Índice de Masa Corporal , HDL-Colesterol , Diabetes Mellitus , Ecocardiografía/métodos , Femenino , Humanos , Lípidos/sangre , Masculino , Síndrome Metabólico/complicaciones , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/patología , Factores de Riesgo , Triglicéridos
17.
Anesthesiology ; 126(6): 1125-1138, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28410273

RESUMEN

BACKGROUND: In surviving patients, sepsis-induced cardiomyopathy is spontaneously reversible. In the absence of any experimental data, it is generally thought that cardiac recovery in sepsis simply follows the remission of systemic inflammation. Here the authors aimed to identify the myocardial mechanisms underlying cardiac recovery in endotoxemic mice. METHODS: Male C57BL/6 mice were challenged with lipopolysaccharide (7 µg/g, intraperitoneally) and followed for 12 days. The authors assessed survival, cardiac function by echocardiography, sarcomere shortening, and calcium transients (with fura-2-acetoxymethyl ester) in electrically paced cardiomyocytes (5 Hz, 37°C) and myocardial protein expression by immunoblotting. RESULTS: Left ventricular ejection fraction, cardiomyocyte sarcomere shortening, and calcium transients were depressed 12 h after lipopolysaccharide challenge, started to recover by 24 h (day 1), and were back to baseline at day 3. The recovery of calcium transients at day 3 was associated with the up-regulation of the sarcoplasmic reticulum calcium pump to 139 ± 19% (mean ± SD) of baseline and phospholamban down-regulation to 35 ± 20% of baseline. At day 6, calcium transients were increased to 123 ± 31% of baseline, associated with increased sarcoplasmic reticulum calcium load (to 126 ± 32% of baseline, as measured with caffeine) and inhibition of sodium/calcium exchange (to 48 ± 12% of baseline). CONCLUSIONS: In mice surviving lipopolysaccharide challenge, the natural recovery of cardiac contractility was associated with the up-regulation of cardiomyocyte calcium handling above baseline levels, indicating the presence of an active myocardial recovery process, which included sarcoplasmic reticulum calcium pump activation, the down-regulation of phospholamban, and sodium/calcium exchange inhibition.


Asunto(s)
Calcio/metabolismo , Cardiomiopatías/metabolismo , Endotoxemia/metabolismo , Regulación hacia Arriba/fisiología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Sarcómeros/metabolismo
18.
Nat Rev Cardiol ; 14(4): 238-250, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28004807

RESUMEN

Heart failure is a pressing worldwide public-health problem with millions of patients having worsening heart failure. Despite all the available therapies, the condition carries a very poor prognosis. Existing therapies provide symptomatic and clinical benefit, but do not fully address molecular abnormalities that occur in cardiomyocytes. This shortcoming is particularly important given that most patients with heart failure have viable dysfunctional myocardium, in which an improvement or normalization of function might be possible. Although the pathophysiology of heart failure is complex, mitochondrial dysfunction seems to be an important target for therapy to improve cardiac function directly. Mitochondrial abnormalities include impaired mitochondrial electron transport chain activity, increased formation of reactive oxygen species, shifted metabolic substrate utilization, aberrant mitochondrial dynamics, and altered ion homeostasis. In this Consensus Statement, insights into the mechanisms of mitochondrial dysfunction in heart failure are presented, along with an overview of emerging treatments with the potential to improve the function of the failing heart by targeting mitochondria.


Asunto(s)
Insuficiencia Cardíaca , Síndrome de Kearns-Sayre , Mitocondrias Cardíacas , Miopatías Mitocondriales , Consenso , Descubrimiento de Drogas , Transporte de Electrón , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Síndrome de Kearns-Sayre/metabolismo , Síndrome de Kearns-Sayre/fisiopatología , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/fisiología , Miopatías Mitocondriales/metabolismo , Miopatías Mitocondriales/fisiopatología , Pronóstico
19.
IJC Metab Endocr ; 13: 28-34, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27942464

RESUMEN

BACKGROUND: Obesity and metabolic syndrome lead to the development of metabolic heart disease (MHD) that is characterized by left ventricular hypertrophy (LVH), diastolic dysfunction, and increased mitochondrial ROS. Caloric restriction (CR) is a nutritional intervention that protects against obesity, diabetes, and cardiovascular disease. Healthy adipose tissue is cardioprotective via releasing adipokines such as adiponectin. We tested the hypothesis that CR can ameliorate MHD and it is associated with improved adipose tissue function as reflected by increased circulating levels of high molecular weight (HMW) adiponectin and AMP-activated protein kinase (AMPK) in db/db mice. METHODS: Genetically obese db/db and lean db/+ male mice were fed either ad libitum or subjected to 30% CR for 5 weeks. At the end of the study period, echocardiography was carried out to assess diastolic function. Blood, heart, and epididymal fat pads were harvested for mitochondrial study, ELISA, and Western blot analyses. RESULTS: CR reversed the development of LVH, prevented diastolic dysfunction, and decreased cardiac mitochondrial H2O2 in db/db (vs. ad lib) mice. These beneficial effects on the heart were associated with increased circulating level of HMW adiponectin. Furthermore, CR increased AMPK and eNOS activation in white adipose tissue of db/db mice, but not in the heart. CONCLUSIONS: These findings indicate that even short-term CR protects the heart from MHD. Whether the beneficial effects of CR on the heart could be related to the improved adipose tissue function warrants future investigation.

20.
Shock ; 46(6): 713-722, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27405063

RESUMEN

In male mice, sepsis-induced cardiomyopathy develops as a result of dysregulation of myocardial calcium (Ca) handling, leading to depressed cellular Ca transients (ΔCai). ΔCai depression is partially due to inhibition of sarcoplasmic reticulum Ca ATP-ase (SERCA) via oxidative modifications, which are partially opposed by cGMP generated by the enzyme soluble guanylyl cyclase (sGC). Whether similar mechanisms underlie sepsis-induced cardiomyopathy in female mice is unknown.Male and female C57Bl/6J mice (WT), and mice deficient in the sGC α1 subunit activity (sGCα1), were challenged with lipopolysaccharide (LPS, ip). LPS induced mouse death and cardiomyopathy (manifested as the depression of left ventricular ejection fraction by echocardiography) to a similar degree in WT male, WT female, and sGCα1 male mice, but significantly less in sGCα1 female mice. We measured sarcomere shortening and ΔCai in isolated, externally paced cardiomyocytes, at 37°C. LPS depressed sarcomere shortening in both WT male and female mice. Consistent with previous findings, in male mice, LPS induced a decrease in ΔCai (to 30 ±â€Š2% of baseline) and SERCA inhibition (manifested as the prolongation of the time constant of Ca decay, τCa, to 150 ±â€Š5% of baseline). In contrast, in female mice, the depression of sarcomere shortening induced by LPS occurred in the absence of any change in ΔCai, or SERCA activity. This suggested that, in female mice, the causative mechanism lies downstream of the Ca transients, such as a decrease in myofilament sensitivity for Ca. The depression of sarcomere shortening shortening after LPS was less severe in female sGCα1 mice than in WT female mice, indicating that cGMP partially mediates cardiomyocyte dysfunction.These results suggest, therefore, that LPS-induced cardiomyopathy develops through distinct sex-specific myocardial mechanisms. While in males LPS induces sGC-independent decrease in ΔCai, in female mice LPS acts downstream of ΔCai, possibly via sGC-dependent myofilament dysfunction.


Asunto(s)
Cardiomiopatías/metabolismo , Sepsis/metabolismo , Animales , Calcio/metabolismo , Cardiomiopatías/etiología , Ecocardiografía , Endotoxemia/metabolismo , Femenino , Guanilato Ciclasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sepsis/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...