Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 26(3): 2829-2847, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29401818

RESUMEN

The dynamics of a multimode quantum cascade laser, are studied in a model based on effective semiconductor Maxwell-Bloch equations, encompassing key features for the radiation-medium interaction such as an asymmetric frequency dependent gain and refractive index as well as the phase-amplitude coupling provided by the linewidth enhancement factor. By considering its role and that of the free spectral range, we find the conditions in which the traveling wave emitted by the laser at the threshold can be destabilized by adjacent modes, thus leading the laser emission towards chaotic or regular multimode dynamics. In the latter case our simulations show that the field oscillations are associated to self-confined structures which travel along the laser cavity, bridging mode-locking and solitary wave propagation. In addition, we show how a RF modulation of the bias current leads to active mode-locking yielding high-contrast, picosecond pulses. Our results compare well with recent experiments on broad-band THz-QCLs and may help in the understanding of the conditions for the generation of ultrashort pulses and comb operation in mid-IR and THz spectral regions.

2.
Opt Lett ; 43(4): 867-870, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29444014

RESUMEN

We experimentally and numerically study the amplitude stability of an InAs/InGaAs quantum dot laser emitting simultaneously on ground states (GSs) and excited state (ESs) at center wavelengths of 1245 and 1168 nm, respectively. The stability is quantified by a spectrally resolved noise current analysis that is dependent on the laser injection current. We find a non-monotonic behavior of the amplitude noise which shows a reduction of up to 4 dB when the GS and ES emit simultaneously. Simulations based on a rate equation model confirm the reduction in noise and suggest the cascaded GS and ES carrier paths as the relevant underlying mechanism.

3.
Opt Express ; 22(9): 10105-18, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24921716

RESUMEN

We study the instability thresholds of the stationary emission of a quantum cascade laser with optical feedback described by the Lang Kobayashi model. We introduce an exact linear stability analysis and an approximated one for an unipolar lasers, who does not exhibit relaxation oscillations, and investigate the regimes of the emitter beyond the continuous wave instability threshold, depending on the number and density of the external cavity modes. We then show that a unipolar laser with feedback can exhibit coherent multimode oscillations that indicate spontaneous phase-locking.

4.
Opt Express ; 22(5): 5867-74, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24663924

RESUMEN

We demonstrate a common-path interferometer to measure the independent displacement of multiple targets through nonlinear frequency mixing in a quantum-cascade laser (QCL). The sensing system exploits the unique stability of QCLs under strong optical feedback to access the intrinsic nonlinearity of the active medium. The experimental results using an external dual cavity are in excellent agreement with the numerical simulations based on the Lang-Kobayashi equations.

5.
Opt Express ; 22(6): 6934-47, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24664042

RESUMEN

We theoretically demonstrate the realization of a complete canonical set of all-optical logic gates (AND, OR, NOT), with a persistent (stored) output, by combining propagative spatial solitons in a photorefractive crystal and dissipative cavity solitons in a downstream broad-area vertical cavity surface emitting laser (VCSEL). The system uses same-color, optical-axis aligned input and output channels with fixed readout locations, while switching from one gate to another is achieved by simply varying the potential applied to the photorefractive crystal. The inputs are Gaussian beams launched in the photorefractive crystal and the output is a bistable, persistent soliton in the VCSEL with a 'robust' eye diagram and large signal-to-noise ratio (SNR). Fast switching and intrinsic parallelism suggest that high bit flow rates can be obtained.

6.
Opt Express ; 21(11): 13748-57, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23736628

RESUMEN

We study the time dependence of the optical power emitted by terahertz and mid-IR quantum cascade lasers in presence of optical reinjection and demonstrate unprecedented continuous wave (CW) emission stability for strong feedback. We show that the absence of coherence collapse or other CW instabilities typical of diode lasers is inherently associated with the high value of the photon to carrier lifetime ratio and the negligible linewidth enhancement factor of quantum cascade lasers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...