Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
J Clin Invest ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888968

RESUMEN

Tolerance of mouse kidney allografts arises in grafts that develop regulatory Tertiary Lymphoid Organs (rTLOs). scRNAseq data and adoptive transfer of alloreactive T cells post-transplant showed that cytotoxic CD8+ T cells are reprogrammed within the accepted graft to an exhausted/regulatory-like phenotype mediated by IFN-γ. Establishment of rTLOs was required since adoptive transfer of alloreactive T cells prior to transplantation results in kidney allograft rejection. Despite intragraft CD8+ cells with a regulatory phenotype, they were not essential for the induction and maintenance of kidney allograft tolerance since renal allotransplantation into CD8 KO recipients resulted in acceptance and not rejection. Analysis of scRNAseq data from allograft kidneys and malignant tumors identified similar regulatory-like cell types within the T cell clusters and trajectory analysis showed that cytotoxic CD8+ T cells are reprogrammed into an exhausted/regulatory-like phenotype intratumorally. Induction of cytotoxic CD8+ T cell dysfunction of infiltrating cells appears to be a beneficial mechanistic pathway that protects the kidney allotransplant from rejection through a process we call "defensive tolerance." This pathway has implications for our understanding of allotransplant tolerance and tumor resistance to host immunity.

2.
bioRxiv ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38854111

RESUMEN

Tau is an intracellular protein but also known to be released into the extracellular fluid. Tau release mechanisms have drawn intense attention as these are known to play a key role in Alzheimer's disease (AD) pathology. However, tau can also be released under physiological conditions although its physiological function and release mechanisms have been poorly characterized, especially in human neuronal cells. We investigated endogenous tau release in ReNCell VM, a human neuroprogenitor cell line, under physiological conditions and found that tau is spontaneously released from cells. To study activity-dependent release of endogenous tau, human ReNCell VM culture was stimulated by 100µM AMPA or 50mM KCl for one-hour, tau was actively released to the culture medium. The released tau was highly phosphorylated at nine phosphorylation sites (pSites) detected by phospho-specific tau antibodies including AT270 (T175/T181), AT8 (S202/T205), AT100 (T212/S214), AT180 (T231), and PHF-1 (S396/S404), showing that these pSites are important for activity-dependent tau release from human ReNCell VM. Intracellular tau showed various phosphorylation status across these sites, with AT270 and PHF-1 highly phosphorylated while AT8 and AT180 were minimally phosphorylated, suggesting that AT8 and AT180 pSites exhibit a propensity for secretion rather than being retained intracellularly. This activity-dependent tau release was significantly decreased by inhibition of GSK-3ß, demonstrating that GSK3ß-dependent phosphorylation of tau plays an important role in its release by neuronal activity. In this study, we showed that ReNCell VM serves as a valuable model for studying endogenous physiological tau release. Further, ReNCell model can be also used to study pathological release of human tau that will contribute to our understanding of the progression of AD and related dementias.

3.
Xenotransplantation ; 31(2): e12859, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646924

RESUMEN

Antibody-mediated rejection (AMR) is a common cause of graft failure after pig-to-nonhuman primate organ transplantation, even when the graft is from a pig with multiple genetic modifications. The specific factors that initiate AMR are often uncertain. We report two cases of pig kidney transplantation into immunosuppressed baboons in which we identify novel factors associated with the initiation of AMR. In the first, membranous nephropathy was the initiating factor that was then associated with the apparent loss of the therapeutic anti-CD154 monoclonal antibody in the urine when severe proteinuria was present. This observation suggests that proteinuria may be associated with the loss of any therapeutic monoclonal antibody, for example, anti-CD154 or eculizumab, in the urine, resulting in xenograft rejection. In the second case, the sequence of events and histopathology tentatively suggested that pyelonephritis may have initiated acute-onset AMR. The association of a urinary infection with graft rejection has been well-documented in ABO-incompatible kidney allotransplantation based on the expression of an antigen on the invading microorganism shared with the kidney graft, generating an immune response to the graft. To our knowledge, these potential initiating factors of AMR in pig xenografts have not been highlighted previously.


Asunto(s)
Rechazo de Injerto , Xenoinjertos , Inmunosupresores , Trasplante de Riñón , Papio , Trasplante Heterólogo , Animales , Femenino , Masculino , Rechazo de Injerto/inmunología , Xenoinjertos/inmunología , Terapia de Inmunosupresión/métodos , Trasplante de Riñón/efectos adversos , Trasplante de Riñón/métodos , Porcinos , Trasplante Heterólogo/métodos , Trasplante Heterólogo/efectos adversos
5.
bioRxiv ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38293177

RESUMEN

The intricate relationship between the dopaminergic system and olfactory associative learning in Drosophila has been an intense scientific inquiry. Leveraging the formidable genetic tools, we conducted a screening of 57 dopaminergic drivers, leading to the discovery of DAN-c1 driver, uniquely targeting the single dopaminergic neuron (DAN) in each brain hemisphere. While the involvement of excitatory D1-like receptors is well-established, the role of D2-like receptors (D2Rs) remains underexplored. Our investigation reveals the expression of D2Rs in both DANs and the mushroom body (MB) of third instar larval brains. Silencing D2Rs in DAN-c1 via microRNA disrupts aversive learning, further supported by optogenetic activation of DAN-c1 during training, affirming the inhibitory role of D2R autoreceptor. Intriguingly, D2R knockdown in the MB impairs both appetitive and aversive learning. These findings elucidate the distinct contributions of D2Rs in diverse brain structures, providing novel insights into the molecular mechanisms governing associative learning in Drosophila larvae.

6.
Am J Transplant ; 24(1): 30-36, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37633449

RESUMEN

De novo membranous nephropathy (dnMN) is an uncommon immune complex-mediated late complication of human kidney allografts that causes proteinuria. We report here the first case of dnMN in a pig-to-baboon kidney xenograft. The donor was a double knockout (GGTA1 and ß4GalNT1) genetically engineered pig with a knockout of the growth hormone receptor and addition of 6 human transgenes (hCD46, hCD55, hTBM, hEPCR, hHO1, and hCD47). The recipient developed proteinuria at 42 days posttransplant, which progressively rose to the nephrotic-range at 106 days, associated with an increase in serum antidonor IgG. Kidney biopsies showed antibody-mediated rejection (AMR) with C4d and thrombotic microangiopathy that eventually led to graft failure at 120 days. In addition to AMR, the xenograft had diffuse, global granular deposition of C4d and IgG along the glomerular basement membrane on days 111 and 120. Electron microscopy showed extensive amorphous subepithelial electron-dense deposits with intervening spikes along the glomerular basement membrane. These findings, in analogy to human renal allografts, are interpreted as dnMN in the xenograft superimposed on AMR. The target was not identified but is hypothesized to be a pig xenoantigen expressed on podocytes. Whether dnMN will be a significant problem in other longer-term xenokidneys remains to be determined.


Asunto(s)
Glomerulonefritis Membranosa , Enfermedades Renales , Trasplante de Riñón , Humanos , Porcinos , Animales , Glomerulonefritis Membranosa/etiología , Trasplante de Riñón/efectos adversos , Xenoinjertos , Riñón/patología , Enfermedades Renales/patología , Proteinuria/etiología , Inmunoglobulina G , Rechazo de Injerto/patología
7.
Kidney Int ; 105(2): 281-292, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37923131

RESUMEN

Lesion scores on procurement donor biopsies are commonly used to guide organ utilization for deceased-donor kidneys. However, frozen sections present challenges for histological scoring, leading to inter- and intra-observer variability and inappropriate discard. Therefore, we constructed deep-learning based models to recognize kidney tissue compartments in hematoxylin & eosin-stained sections from procurement needle biopsies performed nationwide in years 2011-2020. To do this, we extracted whole-slide abnormality features from 2431 kidneys and correlated with pathologists' scores and transplant outcomes. A Kidney Donor Quality Score (KDQS) was derived and used in combination with recipient demographic and peri-transplant characteristics to predict graft loss or assist organ utilization. The performance on wedge biopsies was additionally evaluated. Our model identified 96% and 91% of normal/sclerotic glomeruli respectively; 94% of arteries/arterial intimal fibrosis; 90% of tubules. Whole-slide features of Sclerotic Glomeruli (GS)%, Arterial Intimal Fibrosis (AIF)%, and Interstitial Space Abnormality (ISA)% demonstrated strong correlations with corresponding pathologists' scores of all 2431 kidneys, but had superior associations with post-transplant estimated glomerular filtration rates in 2033 and graft loss in 1560 kidneys. The combination of KDQS and other factors predicted one- and four-year graft loss in a discovery set of 520 kidneys and a validation set of 1040 kidneys. By using the composite KDQS of 398 discarded kidneys due to "biopsy findings", we suggest that if transplanted, 110 discarded kidneys could have had similar survival to that of other transplanted kidneys. Thus, our composite KDQS and survival prediction models may facilitate risk stratification and organ utilization while potentially reducing unnecessary organ discard.


Asunto(s)
Aprendizaje Profundo , Trasplante de Riñón , Obtención de Tejidos y Órganos , Humanos , Trasplante de Riñón/efectos adversos , Estudios Retrospectivos , Selección de Donante , Riñón/patología , Donantes de Tejidos , Biopsia , Fibrosis , Supervivencia de Injerto
8.
Am J Transplant ; 24(3): 338-349, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38032300

RESUMEN

The XVI-th Banff Meeting for Allograft Pathology was held at Banff, Alberta, Canada, from 19th to 23rd September 2022, as a joint meeting with the Canadian Society of Transplantation. To mark the 30th anniversary of the first Banff Classification, premeeting discussions were held on the past, present, and future of the Banff Classification. This report is a summary of the meeting highlights that were most important in terms of their effect on the Classification, including discussions around microvascular inflammation and biopsy-based transcript analysis for diagnosis. In a postmeeting survey, agreement was reached on the delineation of the following phenotypes: (1) "Probable antibody-mediated rejection (AMR)," which represents donor-specific antibodies (DSA)-positive cases with some histologic features of AMR but below current thresholds for a definitive AMR diagnosis; and (2) "Microvascular inflammation, DSA-negative and C4d-negative," a phenotype of unclear cause requiring further study, which represents cases with microvascular inflammation not explained by DSA. Although biopsy-based transcript diagnostics are considered promising and remain an integral part of the Banff Classification (limited to diagnosis of AMR), further work needs to be done to agree on the exact classifiers, thresholds, and clinical context of use.


Asunto(s)
Trasplante de Riñón , Humanos , Complemento C4b , Canadá , Riñón/patología , Inflamación/patología , Isoanticuerpos , Biopsia
9.
Brain Res ; 1822: 148641, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37866407

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease showing uncontrollable motor symptoms that are primarily caused by the progressive loss of dopaminergic neurons in the brain. Currently no treatment exists to prevent PD progression. Therefore, discovery of new neuroprotective strategies still has great potential to benefit PD patients. A handful of studies show that activation of cAMP pathways is neuroprotective against PD progression. However, the neuroprotective role of this signaling cascade specifically in DA neurons has not been explored. In this study, fruit fly Drosophila melanogaster was used because of its sophisticated and powerful genetic approaches, especially with related to cAMP signaling pathway. We have investigated molecular mechanisms of neuroprotection in a fly larval model of PD by administering an environmental PD toxin rotenone. Increased cAMP signaling in the dunce mutant fly carrying defects in phosphodiesterase (PDE) gene, is neuroprotective against rotenone-induced locomotion deficits. Furthermore, the neuroprotective role of cAMP signaling specifically in DA neurons has been studied as it has not been explored. By using transgenic flies expressing designer receptors exclusively activated by designer drugs (DREADDs), we have shown that an increase of cAMP levels in DA neurons rescues rotenone-induced locomotion deficits. We also showed that this neuroprotection is mediated by activation of Gαs and PKA-C1 subunits. The results provide novel findings that expand our knowledge of neuroprotective mechanisms in DA neurons affecting PD progression, which could contribute to the development of new therapeutic treatments against PD. An important future study will explore downstream targets of cAMP-PKA signaling.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Humanos , Enfermedad de Parkinson/metabolismo , Drosophila/metabolismo , Neuronas Dopaminérgicas/metabolismo , Drosophila melanogaster/metabolismo , Rotenona , Enfermedades Neurodegenerativas/metabolismo , Larva , AMP Cíclico/metabolismo , Transducción de Señal , Fármacos Neuroprotectores/metabolismo , Modelos Animales de Enfermedad
10.
Kidney Int ; 105(4): 812-823, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38128610

RESUMEN

Kidney transplant (KTx) biopsies showing transplant glomerulopathy (TG) (glomerular basement membrane double contours (cg) > 0) and microvascular inflammation (MVI) in the absence of C4d staining and donor-specific antibodies (DSAs) do not fulfill the criteria for chronic active antibody-mediated rejection (CA-AMR) diagnosis and do not fit into any other Banff category. To investigate this, we initiated a multicenter intercontinental study encompassing 36 cases, comparing the immunomic and transcriptomic profiles of 14 KTx biopsies classified as cg+MVI DSA-/C4d- with 22 classified as CA-AMR DSA+/C4d+ through novel transcriptomic analysis using the NanoString Banff-Human Organ Transplant (B-HOT) panel and subsequent orthogonal subset analysis using two innovative 5-marker multiplex immunofluorescent panels. Nineteen genes were differentially expressed between the two study groups. Samples diagnosed with CA-AMR DSA+/C4d+ showed a higher glomerular abundance of natural killer cells and higher transcriptomic cell type scores for macrophages in an environment characterized by increased expression of complement-related genes (i.e., C5AR1) and higher activity of angiogenesis, interstitial fibrosis tubular atrophy, CA-AMR, and DSA-related pathways when compared to samples diagnosed with cg+MVI DSA-/C4d-. Samples diagnosed with cg+MVI DSA-/C4d- displayed a higher glomerular abundance and activity of T cells (CD3+, CD3+CD8+, and CD3+CD8-). Thus, we show that using novel multiomic techniques, KTx biopsies with cg+MVI DSA-/C4d- have a prominent T-cell presence and activity, putting forward the possibility that these represent a more T-cell dominant phenotype.


Asunto(s)
Enfermedades Renales , Trasplante de Riñón , Humanos , Multiómica , Isoanticuerpos , Linfocitos T , Trasplante de Riñón/efectos adversos , Inflamación , Biopsia , Rechazo de Injerto , Fragmentos de Péptidos , Complemento C4b
11.
Nature ; 622(7982): 393-401, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37821590

RESUMEN

Recent human decedent model studies1,2 and compassionate xenograft use3 have explored the promise of porcine organs for human transplantation. To proceed to human studies, a clinically ready porcine donor must be engineered and its xenograft successfully tested in nonhuman primates. Here we describe the design, creation and long-term life-supporting function of kidney grafts from a genetically engineered porcine donor transplanted into a cynomolgus monkey model. The porcine donor was engineered to carry 69 genomic edits, eliminating glycan antigens, overexpressing human transgenes and inactivating porcine endogenous retroviruses. In vitro functional analyses showed that the edited kidney endothelial cells modulated inflammation to an extent that was indistinguishable from that of human endothelial cells, suggesting that these edited cells acquired a high level of human immune compatibility. When transplanted into cynomolgus monkeys, the kidneys with three glycan antigen knockouts alone experienced poor graft survival, whereas those with glycan antigen knockouts and human transgene expression demonstrated significantly longer survival time, suggesting the benefit of human transgene expression in vivo. These results show that preclinical studies of renal xenotransplantation could be successfully conducted in nonhuman primates and bring us closer to clinical trials of genetically engineered porcine renal grafts.


Asunto(s)
Rechazo de Injerto , Trasplante de Riñón , Macaca fascicularis , Porcinos , Trasplante Heterólogo , Animales , Humanos , Animales Modificados Genéticamente , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Trasplante de Riñón/métodos , Polisacáridos/deficiencia , Porcinos/genética , Trasplante Heterólogo/métodos , Transgenes/genética
12.
J Clin Invest ; 133(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37676733

RESUMEN

Donor-recipient (D-R) mismatches outside of human leukocyte antigens (HLAs) contribute to kidney allograft loss, but the mechanisms remain unclear, specifically for intronic mismatches. We quantified non-HLA mismatches at variant-, gene-, and genome-wide scales from single nucleotide polymorphism (SNP) data of D-Rs from 2 well-phenotyped transplant cohorts: Genomics of Chronic Allograft Rejection (GoCAR; n = 385) and Clinical Trials in Organ Transplantation-01/17 (CTOT-01/17; n = 146). Unbiased gene-level screening in GoCAR uncovered the LIMS1 locus as the top-ranked gene where D-R mismatches associated with death-censored graft loss (DCGL). A previously unreported, intronic, LIMS1 haplotype of 30 SNPs independently associated with DCGL in both cohorts. Haplotype mismatches showed a dosage effect, and minor-allele introduction to major-allele-carrying recipients showed greater hazard of DCGL. The LIMS1 haplotype and the previously reported LIMS1 SNP rs893403 are expression quantitative trait loci (eQTL) in immune cells for GCC2 (not LIMS1), which encodes a protein involved in mannose-6-phosphase receptor (M6PR) recycling. Peripheral blood and T cell transcriptome analyses associated the GCC2 gene and LIMS1 SNPs with the TGF-ß1/SMAD pathway, suggesting a regulatory effect. In vitro GCC2 modulation impacted M6PR-dependent regulation of active TGF-ß1 and downstream signaling in T cells. Together, our data link LIMS1 locus D-R mismatches to DCGL via GCC2 eQTLs that modulate TGF-ß1-dependent effects on T cells.


Asunto(s)
Trasplante de Riñón , Humanos , Factor de Crecimiento Transformador beta1/genética , Rechazo de Injerto/genética , Riñón , Donantes de Tejidos , Antígenos HLA , Supervivencia de Injerto/genética , Proteínas de la Membrana , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas con Dominio LIM/genética
13.
Curr Opin Organ Transplant ; 28(5): 340-344, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37526088

RESUMEN

PURPOSE OF REVIEW: This review aims to summarize the highlights from recent research that involved pathological and molecular analysis of kidney allografts. RECENT FINDINGS: As the research on antibody-mediated rejection (AMR) continues to evolve, studies are focused on identification through transcript studies of pathogenetic pathways involved in the development of AMR as well as refinement of diagnostic methods either by correlating Banff pathologic lesions with clinical and molecular data or by machine learning. Of note, the past year has generated high impact research that underscore the importance of pathologic and molecular correlations and detection of transcripts or gene sets that would aid prognostication. The studies involving refinement of pathologic criteria also highlight the continuous efforts to achieve diagnostic accuracy and standardization. SUMMARY: Research involving histologic and molecular characteristics that define AMR are central to identification and understanding of pathogenetic pathways and remain critical in the development of diagnostic criteria.


Asunto(s)
Trasplante de Riñón , Humanos , Trasplante de Riñón/efectos adversos , Rechazo de Injerto/patología , Riñón/patología , Isoanticuerpos , Trasplante Homólogo
14.
Am J Transplant ; 23(12): 1872-1881, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37422112

RESUMEN

Regulatory T cells (Tregs) can inhibit cellular immunity in diverse experimental models and have entered early phase clinical trials in autoimmunity and transplantation to assess safety and efficacy. As part of the ONE Study consortium, we conducted a phase I-II clinical trial in which purified donor antigen reactive (dar)-Tregs (CD4+CD25+CD127lo) were administered to 3 patients, 7 to 11 days after live donor renal transplant. Recipients received a modified immunosuppression regimen, without induction therapy, consisting of maintenance tacrolimus, mycophenolate mofetil, and steroids. Steroids were weaned off over 14 weeks. No rejection was seen on any protocol biopsy. Therefore, all patients discontinued mycophenolate mofetil 11 to 13 months posttransplant, per protocol. An early for-cause biopsy in 1 patient, 5 days after dar-Treg infusion, revealed absence of rejection and accumulation of Tregs in the kidney allograft. All patients had Treg-containing lymphoid aggregates evident on protocol biopsies performed 8 months posttransplant. The patients are now all >6 years posttransplant on tacrolimus monotherapy with excellent graft function. None experienced rejection episodes. No serious adverse events were attributable to Treg administration. These results support a favorable safety profile of dar-Tregs administered early after renal transplant, suggest early biopsy might be an instructive research endpoint and provide preliminary evidence of potential immunomodulatory activity.


Asunto(s)
Inmunosupresores , Tacrolimus , Humanos , Inmunosupresores/farmacología , Tacrolimus/uso terapéutico , Ácido Micofenólico/uso terapéutico , Donadores Vivos , Linfocitos T Reguladores , Proyectos Piloto , Riñón , Esteroides , Rechazo de Injerto/etiología , Rechazo de Injerto/prevención & control , Rechazo de Injerto/tratamiento farmacológico
15.
J Clin Invest ; 133(13)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37395276

RESUMEN

BackgroundAcute tubulointerstitial nephritis (AIN) is one of the few causes of acute kidney injury with diagnosis-specific treatment options. However, due to the need to obtain a kidney biopsy for histological confirmation, AIN diagnosis can be delayed, missed, or incorrectly assumed. Here, we identify and validate urinary CXCL9, an IFN-γ-induced chemokine involved in lymphocyte chemotaxis, as a diagnostic biomarker for AIN.MethodsIn a prospectively enrolled cohort with pathologist-adjudicated histological diagnoses, termed the discovery cohort, we tested the association of 180 immune proteins measured by an aptamer-based assay with AIN and validated the top protein, CXCL9, using sandwich immunoassay. We externally validated these findings in 2 cohorts with biopsy-confirmed diagnoses, termed the validation cohorts, and examined mRNA expression differences in kidney tissue from patients with AIN and individuals in the control group.ResultsIn aptamer-based assay, urinary CXCL9 was 7.6-fold higher in patients with AIN than in individuals in the control group (P = 1.23 × 10-5). Urinary CXCL9 measured by sandwich immunoassay was associated with AIN in the discovery cohort (n = 204; 15% AIN) independently of currently available clinical tests for AIN (adjusted odds ratio for highest versus lowest quartile: 6.0 [1.8-20]). Similar findings were noted in external validation cohorts, where CXCL9 had an AUC of 0.94 (0.86-1.00) for AIN diagnosis. CXCL9 mRNA expression was 3.9-fold higher in kidney tissue from patients with AIN (n = 19) compared with individuals in the control group (n = 52; P = 5.8 × 10-6).ConclusionWe identified CXCL9 as a diagnostic biomarker for AIN using aptamer-based urine proteomics, confirmed this association using sandwich immunoassays in discovery and external validation cohorts, and observed higher expression of this protein in kidney biopsies from patients with AIN.FundingThis study was supported by National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) awards K23DK117065 (DGM), K08DK113281 (KM), R01DK128087 (DGM), R01DK126815 (DGM and LGC), R01DK126477 (KNC), UH3DK114866 (CRP, DGM, and FPW), R01DK130839 (MES), and P30DK079310 (the Yale O'Brien Center). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Asunto(s)
Nefritis Intersticial , Humanos , Nefritis Intersticial/diagnóstico , Nefritis Intersticial/inducido químicamente , Nefritis Intersticial/patología , Riñón/patología , Biomarcadores , ARN Mensajero , Quimiocina CXCL9/genética , Quimiocina CXCL9/efectos adversos
16.
Am J Transplant ; 23(9): 1319-1330, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37295719

RESUMEN

Mouse kidney allografts are spontaneously accepted in select, fully mismatched donor-recipient strain combinations, like DBA/2J to C57BL/6 (B6), by natural tolerance. We previously showed accepted renal grafts form aggregates containing various immune cells within 2 weeks posttransplant, referred to as regulatory T cell-rich organized lymphoid structures, which are a novel regulatory tertiary lymphoid organ. To characterize the cells within T cell-rich organized lymphoid structures, we performed single-cell RNA sequencing on CD45+ sorted cells from accepted and rejected renal grafts from 1-week to 6-months posttransplant. Analysis of single-cell RNA sequencing data revealed a shifting from a T cell-dominant to a B cell-rich population by 6 months with an increased regulatory B cell signature. Furthermore, B cells were a greater proportion of the early infiltrating cells in accepted vs rejecting grafts. Flow cytometry of B cells at 20 weeks posttransplant revealed T cell, immunoglobulin domain and mucin domain-1+ B cells, potentially implicating a regulatory role in the maintenance of allograft tolerance. Lastly, B cell trajectory analysis revealed intragraft differentiation from precursor B cells to memory B cells in accepted allografts. In summary, we show a shifting T cell- to B cell-rich environment and a differential cellular pattern among accepted vs rejecting kidney allografts, possibly implicating B cells in the maintenance of kidney allograft acceptance.


Asunto(s)
Linfocitos B Reguladores , Ratones , Animales , Transcriptoma , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Riñón , Aloinjertos , Diferenciación Celular , Rechazo de Injerto/etiología , Supervivencia de Injerto
17.
Am J Transplant ; 23(8): 1171-1181, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37019335

RESUMEN

The blockade of the CD154-CD40 pathway with anti-CD154 monoclonal antibody has been a promising immunomodulatory approach to prevent allograft rejection. However, clinical trials of immunoglobulin G1 antibodies targeting this pathway revealed thrombogenic properties, which were subsequently shown to be mediated by crystallizable fragment (Fc)-gamma receptor IIa-dependent platelet activation. To prevent thromboembolic complications, an immunoglobulin G4 anti-CD154 monoclonal antibody, TNX-1500, which retains the fragment antigen binding region of ruplizumab (humanized 5c8, BG9588), was modified by protein engineering to decrease Fc binding to Fc-gamma receptor IIa while retaining certain other effector functions and pharmacokinetics comparable with natural antibodies. Here, we report that TNX-1500 treatment is not associated with platelet activation in vitro and consistently inhibits kidney allograft rejection in vivo without clinical or histologic evidence of prothrombotic phenomena. We conclude that TNX-1500 retains efficacy similar to that of 5c8 to prevent kidney allograft rejection while avoiding previously identified pathway-associated thromboembolic complications.


Asunto(s)
Trasplante de Riñón , Animales , Trasplante de Riñón/efectos adversos , Ligando de CD40 , Riñón , Anticuerpos Monoclonales/uso terapéutico , Antígenos CD40 , Inmunoglobulina G , Primates , Aloinjertos , Supervivencia de Injerto , Rechazo de Injerto/etiología , Rechazo de Injerto/prevención & control
18.
J Am Soc Nephrol ; 34(7): 1159-1165, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37094382

RESUMEN

BACKGROUND: In most CKDs, lysyl oxidase oxidation of collagen forms allysine side chains, which then form stable crosslinks. We hypothesized that MRI with the allysine-targeted probe Gd-oxyamine (OA) could be used to measure this process and noninvasively detect renal fibrosis. METHODS: Two mouse models were used: hereditary nephritis in Col4a3-deficient mice (Alport model) and a glomerulonephritis model, nephrotoxic nephritis (NTN). MRI measured the difference in kidney relaxation rate, ΔR1, after intravenous Gd-OA administration. Renal tissue was collected for biochemical and histological analysis. RESULTS: ΔR1 was increased in the renal cortex of NTN mice and in both the cortex and the medulla of Alport mice. Ex vivo tissue analyses showed increased collagen and Gd-OA levels in fibrotic renal tissues and a high correlation between tissue collagen and ΔR1. CONCLUSIONS: Magnetic resonance imaging using Gd-OA is potentially a valuable tool for detecting and staging renal fibrogenesis.


Asunto(s)
Riñón , Nefritis Hereditaria , Ratones , Animales , Riñón/diagnóstico por imagen , Riñón/patología , Nefritis Hereditaria/patología , Fibrosis , Imagen por Resonancia Magnética/métodos , Modelos Animales de Enfermedad
19.
Sci Transl Med ; 15(690): eadd5318, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37018417

RESUMEN

Hematopoietic stem cell transplantation (HSCT) has many potential applications beyond current standard indications, including treatment of autoimmune disease, gene therapy, and transplant tolerance induction. However, severe myelosuppression and other toxicities after myeloablative conditioning regimens have hampered wider clinical use. To achieve donor hematopoietic stem cell (HSC) engraftment, it appears essential to establish niches for the donor HSCs by depleting the host HSCs. To date, this has been achievable only by nonselective treatments such as irradiation or chemotherapeutic drugs. An approach that is capable of more selectively depleting host HSCs is needed to widen the clinical application of HSCT. Here, we show in a clinically relevant nonhuman primate model that selective inhibition of B cell lymphoma 2 (Bcl-2) promoted hematopoietic chimerism and renal allograft tolerance after partial deletion of HSCs and effective peripheral lymphocyte deletion while preserving myeloid cells and regulatory T cells. Although Bcl-2 inhibition alone was insufficient to induce hematopoietic chimerism, the addition of a Bcl-2 inhibitor resulted in promotion of hematopoietic chimerism and renal allograft tolerance despite using only half of the dose of total body irradiation previously required. Selective inhibition of Bcl-2 is therefore a promising approach to induce hematopoietic chimerism without myelosuppression and has the potential to render HSCT more feasible for a variety of clinical indications.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Trasplante de Riñón , Animales , Quimerismo , Primates , Tolerancia al Trasplante , Genes bcl-2
20.
Metallomics ; 15(2)2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36737500

RESUMEN

Synchrotron X-ray fluorescence microscopy (SXRF) presents a valuable opportunity to study the metallome of single cells because it simultaneously provides high-resolution subcellular distribution and quantitative cellular content of multiple elements. Different sample preparation techniques have been used to preserve cells for observations with SXRF, with a goal to maintain fidelity of the cellular metallome. In this case study, mouse pancreatic beta-cells have been preserved with optimized chemical fixation. We show that cell-to-cell variability is normal in the metallome of beta-cells due to heterogeneity and should be considered when interpreting SXRF data. In addition, we determined the impact of several immunofluorescence (IF) protocols on metal distribution and quantification in chemically fixed beta-cells and found that the metallome of beta-cells was not well preserved for quantitative analysis. However, zinc and iron qualitative analysis could be performed after IF with certain limitations. To help minimize metal loss using samples that require IF, we describe a novel IF protocol that can be used with chemically fixed cells after the completion of SXRF.


Asunto(s)
Metales , Sincrotrones , Animales , Ratones , Rayos X , Espectrometría por Rayos X/métodos , Metales/análisis , Hierro/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...