Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(5): 106732, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37216102

RESUMEN

Patients with myotonic dystrophy type I (DM1) demonstrate visuospatial dysfunction and impaired performance in tasks requiring recognition or memory of figures and objects. In DM1, CUG expansion RNAs inactivate the muscleblind-like (MBNL) proteins. We show that constitutive Mbnl2 inactivation in Mbnl2ΔE2/ΔE2 mice selectively impairs object recognition memory in the novel object recognition test. When exploring the context of a novel arena in which the objects are later encountered, the Mbnl2ΔE2/ΔE2 dorsal hippocampus responds with a lack of enrichment for learning and memory-related pathways, mounting instead transcriptome alterations predicted to impair growth and neuron viability. In Mbnl2ΔE2/ΔE2 mice, saturation effects may prevent deployment of a functionally relevant transcriptome response during novel context exploration. Post-novel context exploration alterations in genes implicated in tauopathy and dementia are observed in the Mbnl2ΔE2/ΔE2 dorsal hippocampus. Thus, MBNL2 inactivation in patients with DM1 may alter novel context processing in the dorsal hippocampus and impair object recognition memory.

2.
PLoS Pathog ; 19(3): e1011240, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36961850

RESUMEN

One of the major pathogenesis mechanisms of SARS-CoV-2 is its potent suppression of innate immunity, including blocking the production of type I interferons. However, it is unknown whether and how the virus interacts with different innate-like T cells, including NKT, MAIT and γδ T cells. Here we reported that upon SARS-CoV-2 infection, invariant NKT (iNKT) cells rapidly trafficked to infected lung tissues from the periphery. We discovered that the envelope (E) protein of SARS-CoV-2 efficiently down-regulated the cell surface expression of the antigen-presenting molecule, CD1d, to suppress the function of iNKT cells. E protein is a small membrane protein and a viroporin that plays important roles in virion packaging and envelopment during viral morphogenesis. We showed that the transmembrane domain of E protein was responsible for suppressing CD1d expression by specifically reducing the level of mature, post-ER forms of CD1d, suggesting that it suppressed the trafficking of CD1d proteins and led to their degradation. Point mutations demonstrated that the putative ion channel function was required for suppression of CD1d expression and inhibition of the ion channel function using small chemicals rescued the CD1d expression. Importantly, we discovered that among seven human coronaviruses, only E proteins from highly pathogenic coronaviruses including SARS-CoV-2, SARS-CoV and MERS suppressed CD1d expression, whereas the E proteins of human common cold coronaviruses, HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1, did not. These results suggested that E protein-mediated evasion of NKT cell function was likely an important pathogenesis factor, enhancing the virulence of these highly pathogenic coronaviruses. Remarkably, activation of iNKT cells with their glycolipid ligands, both prophylactically and therapeutically, overcame the putative viral immune evasion, significantly mitigated viral pathogenesis and improved host survival in mice. Our results suggested a novel NKT cell-based anti-SARS-CoV-2 therapeutic approach.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Células T Asesinas Naturales , Humanos , Animales , Ratones , Evasión Inmune , SARS-CoV-2
3.
Biosensors (Basel) ; 13(2)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36831970

RESUMEN

The COVID-19 pandemic revealed a pressing need for the development of sensitive and low-cost point-of-care sensors for disease diagnosis. The current standard of care for COVID-19 is quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). This method is sensitive, but takes time, effort, and requires specialized equipment and reagents to be performed correctly. This make it unsuitable for widespread, rapid testing and causes poor individual and policy decision-making. Rapid antigen tests (RATs) are a widely used alternative that provide results quickly but have low sensitivity and are prone to false negatives, particularly in cases with lower viral burden. Electrochemical sensors have shown much promise in filling this technology gap, and impedance spectroscopy specifically has exciting potential in rapid screening of COVID-19. Due to the data-rich nature of impedance measurements performed at different frequencies, this method lends itself to machine-leaning (ML) algorithms for further data processing. This review summarizes the current state of impedance spectroscopy-based point-of-care sensors for the detection of the SARS-CoV-2 virus. This article also suggests future directions to address the technology's current limitations to move forward in this current pandemic and prepare for future outbreaks.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/métodos , Sensibilidad y Especificidad
4.
Viruses ; 16(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38257760

RESUMEN

BACKGROUND: SARS-CoV-2 is a respiratory virus with neurological complications including the loss of smell and taste, headache, and confusion that can persist for months or longer. Severe neuronal cell damage has also been reported in some cases. The objective of this study was to compare the infectivity of the wild-type virus, Delta (B.1.617.2) and Omicron (B.1.1.529) variants in transgenic mice that express the human angiotensin-converting enzyme 2 (hACE2) receptor under the control of the keratin 18 promoter (K18) and characterize the progression of infection and inflammatory response in the lungs, brain, medulla oblongata, and olfactory bulbs of these animals. We hypothesized that wild type, Delta and Omicron differentially infect K18-hACE2 mice, thereby inducing distinct cellular responses. METHODS: K18-hACE2 female mice were intranasally infected with wild-type, Delta, or Omicron variants and euthanized either at 3 days post-infection (dpi) or at the humane endpoint. None of the animals infected with the Omicron variant reached the humane endpoint and were euthanized at day 8 dpi. Virological and immunological analyses were performed in the lungs, brains, medulla oblongata and olfactory bulbs isolated from infected mice. RESULTS: At 3 dpi, mice infected with wild type and Delta displayed significantly higher levels of viral RNA in the lungs than mice infected with Omicron, while in the brain, Delta and Omicron resulted in higher levels of viral RNA than with the wild type. Viral RNA was also detected in the medulla oblongata of mice infected by all these virus strains. At this time point, the mice infected with wild type and Delta displayed a marked upregulation of many inflammatory markers in the lungs. On the other hand, the upregulation of inflammatory markers was observed only in the brains of mice infected with Delta and Omicron. At the humane endpoint, we observed a significant increase in the levels of viral RNA in the lungs and brains of mice infected with wild type and Delta, which was accompanied by the elevated expression of many inflammatory markers. In contrast, mice which survived infection with the Omicron variant showed high levels of viral RNA and the upregulation of cytokine and chemokine expression only in the lungs at 8 dpi, suggesting that infection and inflammatory response by this variant is attenuated in the brain. Reduced RNA levels and the downregulation of inflammatory markers was also observed in the medulla oblongata and olfactory bulbs of mice infected with Omicron at 8 dpi as compared with mice infected with wild-type and Delta at the humane end point. Collectively, these data demonstrate that wild-type, Delta, and Omicron SARS-CoV-2 induce distinct levels of infection and inflammatory responses in K18-hACE2 mice. Notably, sustained brain infection accompanied by the upregulation of inflammatory markers is a critical outcome in mice infected with wild type and Delta but not Omicron.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Animales , Femenino , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/genética , COVID-19/patología , Queratina-18 , Ratones Transgénicos , ARN Viral/genética , SARS-CoV-2/genética
5.
Front Immunol ; 13: 1007955, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389819

RESUMEN

Gamma-aminobutyric acid (GABA) and GABA-receptors (GABA-Rs) form a major neurotransmitter system in the brain. GABA-Rs are also expressed by 1) cells of the innate and adaptive immune system and act to inhibit their inflammatory activities, and 2) lung epithelial cells and GABA-R agonists/potentiators have been observed to limit acute lung injuries. These biological properties suggest that GABA-R agonists may have potential for treating COVID-19. We previously reported that GABA-R agonist treatments protected mice from severe disease induced by infection with a lethal mouse coronavirus (MHV-1). Because MHV-1 targets different cellular receptors and is biologically distinct from SARS-CoV-2, we sought to test GABA therapy in K18-hACE2 mice which develop severe pneumonitis with high lethality following SARS-CoV-2 infection. We observed that GABA treatment initiated immediately after SARS-CoV-2 infection, or 2 days later near the peak of lung viral load, reduced pneumonitis severity and death rates in K18-hACE2 mice. GABA-treated mice had reduced lung viral loads and displayed shifts in their serum cytokine/chemokine levels that are associated with better outcomes in COVID-19 patients. Thus, GABA-R activation had multiple effects that are also desirable for the treatment of COVID-19. The protective effects of GABA against two very different beta coronaviruses (SARS-CoV-2 and MHV-1) suggest that it may provide a generalizable off-the-shelf therapy to help treat diseases induced by new SARS-CoV-2 variants and novel coronaviruses that evade immune responses and antiviral medications. GABA is inexpensive, safe for human use, and stable at room temperature, making it an attractive candidate for testing in clinical trials. We also discuss the potential of GABA-R agonists for limiting COVID-19-associated neuroinflammation.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Neumonía , Ratones , Humanos , Animales , SARS-CoV-2 , Carga Viral , Ácido gamma-Aminobutírico
6.
Proc Natl Acad Sci U S A ; 119(26): e2122897119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35700355

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolves rapidly under the pressure of host immunity, as evidenced by waves of emerging variants despite effective vaccinations, highlighting the need for complementing antivirals. We report that targeting a pyrimidine synthesis enzyme restores inflammatory response and depletes the nucleotide pool to impede SARS-CoV-2 infection. SARS-CoV-2 deploys Nsp9 to activate carbamoyl-phosphate synthetase, aspartate transcarbamoylase, and dihydroorotase (CAD) that catalyzes the rate-limiting steps of the de novo pyrimidine synthesis. Activated CAD not only fuels de novo nucleotide synthesis but also deamidates RelA. While RelA deamidation shuts down NF-κB activation and subsequent inflammatory response, it up-regulates key glycolytic enzymes to promote aerobic glycolysis that provides metabolites for de novo nucleotide synthesis. A newly synthesized small-molecule inhibitor of CAD restores antiviral inflammatory response and depletes the pyrimidine pool, thus effectively impeding SARS-CoV-2 replication. Targeting an essential cellular metabolic enzyme thus offers an antiviral strategy that would be more refractory to SARS-CoV-2 genetic changes.


Asunto(s)
Antivirales , Aspartato Carbamoiltransferasa , Tratamiento Farmacológico de COVID-19 , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante) , Dihidroorotasa , Inhibidores Enzimáticos , Pirimidinas , SARS-CoV-2 , Replicación Viral , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Aspartato Carbamoiltransferasa/antagonistas & inhibidores , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/antagonistas & inhibidores , Dihidroorotasa/antagonistas & inhibidores , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Ratones , Pirimidinas/antagonistas & inhibidores , Pirimidinas/biosíntesis , Proteínas de Unión al ARN/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Factor de Transcripción ReIA/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
7.
Commun Biol ; 4(1): 1342, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34848815

RESUMEN

Myotonic Dystrophy Type I (DM1) patients demonstrate widespread and variable brain structural alterations whose etiology is unclear. We demonstrate that inactivation of the Muscleblind-like proteins, Mbnl1 and Mbnl2, initiates brain structural defects. 2D FSE T2w MRIs on 4-month-old Mbnl1+/-/Mbnl2-/- mice demonstrate whole-brain volume reductions, ventriculomegaly and regional gray and white matter volume reductions. Comparative MRIs on 2-month-old Mbnl1-/-, Mbnl2-/- and Mbnl1-/-/Mbnl2+/- brains show genotype-specific reductions in white and gray matter volumes. In both cohorts, white matter volume reductions predominate, with Mbnl2 loss leading to more widespread alterations than Mbnl1 loss. Hippocampal volumes are susceptible to changes in either Mbnl1 or Mbnl2 levels, where both single gene and dual depletions result in comparable volume losses. In contrast, the cortex, inter/midbrain, cerebellum and hindbrain regions show both gene and dose-specific volume decreases. Our results provide a molecular explanation for phenotype intensification in congenital DM1 and the variability in the brain structural alterations reported in DM1.


Asunto(s)
Encéfalo/patología , Proteínas de Unión al ADN/genética , Genotipo , Proteínas de Unión al ARN/genética , Animales , Proteínas de Unión al ADN/metabolismo , Femenino , Ratones , Proteínas de Unión al ARN/metabolismo
8.
BMC Mol Cell Biol ; 21(1): 71, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33054770

RESUMEN

BACKGROUND: The Werner syndrome protein (WRN) belongs to the RecQ family of helicases and its loss of function results in the premature aging disease Werner syndrome (WS). We previously demonstrated that an early cellular change induced by WRN depletion is a posttranscriptional decrease in the levels of enzymes involved in metabolic pathways that control macromolecular synthesis and protect from oxidative stress. This metabolic shift is tolerated by normal cells but causes mitochondria dysfunction and acute oxidative stress in rapidly growing cancer cells, thereby suppressing their proliferation. RESULTS: To identify the mechanism underlying this metabolic shift, we examined global protein synthesis and mRNA nucleocytoplasmic distribution after WRN knockdown. We determined that WRN depletion in HeLa cells attenuates global protein synthesis without affecting the level of key components of the mRNA export machinery. We further observed that WRN depletion affects the nuclear export of mRNAs and demonstrated that WRN interacts with mRNA and the Nuclear RNA Export Factor 1 (NXF1). CONCLUSIONS: Our findings suggest that WRN influences the export of mRNAs from the nucleus through its interaction with the NXF1 export receptor thereby affecting cellular proteostasis. In summary, we identified a new partner and a novel function of WRN, which is especially important for the proliferation of cancer cells.


Asunto(s)
Núcleo Celular/metabolismo , Neoplasias/metabolismo , ARN Mensajero/genética , Helicasa del Síndrome de Werner/metabolismo , Línea Celular Tumoral , Proliferación Celular/fisiología , Células HeLa , Humanos , Redes y Vías Metabólicas/fisiología , Oxidación-Reducción , Procesamiento Postranscripcional del ARN/fisiología , Transporte de ARN/fisiología , Proteínas de Unión al ARN/metabolismo , RecQ Helicasas/genética , Síndrome de Werner/metabolismo
9.
Methods Mol Biol ; 2144: 245-257, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32410041

RESUMEN

Reactive oxygen species (ROS) represent a number of highly reactive oxygen-derived by-products generated by the normal mitochondrial respiration and other cellular metabolic reactions. ROS can oxidize macromolecules including lipids, proteins, and nucleic acids. Under physiological condition, the cellular levels of ROS are controlled by several antioxidant enzymes. However, an imbalance between ROS production and detoxification results in oxidative stress, which leads to the accumulation of macromolecular damage and progressive decline in normal physiological functions.Oxidative deterioration of DNA can result in lesion that are mutagenic and contribute to aging and age-related diseases. Therefore, methods for the detection of ROS and oxidative deterioration of macromolecules such as DNA in cells provide important tool in aging research. Here, we described protocols for the detection of cytoplasmic and mitochondria pools of hydrogen peroxide, and the DNA modification 8-oxoguanine, a biomarker of oxidative damage, that are applicable to cell-based studies on aging and other related areas.


Asunto(s)
Envejecimiento Prematuro/genética , Envejecimiento/genética , Daño del ADN/genética , Peróxido de Hidrógeno/aislamiento & purificación , Envejecimiento Prematuro/patología , Animales , Antioxidantes/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Ratones , Mitocondrias , Mutagénesis/genética , Mutación/genética , Oxidación-Reducción , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno/metabolismo
10.
Mol Cell Biol ; 37(3)2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27849570

RESUMEN

The Werner syndrome protein (WRN) suppresses the loss of telomeres replicated by lagging-strand synthesis by a yet to be defined mechanism. Here, we show that whereas either WRN or the Bloom syndrome helicase (BLM) stimulates DNA polymerase δ progression across telomeric G-rich repeats, only WRN promotes sequential strand displacement synthesis and FEN1 cleavage, a critical step in Okazaki fragment maturation, at these sequences. Helicase activity, as well as the conserved winged-helix (WH) motif and the helicase and RNase D C-terminal (HRDC) domain play important but distinct roles in this process. Remarkably, WRN also influences the formation of FEN1 cleavage products during strand displacement on a nontelomeric substrate, suggesting that WRN recruitment and cooperative interaction with FEN1 during lagging-strand synthesis may serve to regulate sequential strand displacement and flap cleavage at other genomic sites. These findings define a biochemical context for the physiological role of WRN in maintaining genetic stability.


Asunto(s)
ADN Polimerasa III/metabolismo , Replicación del ADN , Endonucleasas de ADN Solapado/metabolismo , Helicasa del Síndrome de Werner/metabolismo , Secuencias de Aminoácidos , ADN/biosíntesis , Células HeLa , Homeostasis , Humanos , Polimerizacion , Dominios Proteicos , RecQ Helicasas/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos/genética , Especificidad por Sustrato , Telómero/metabolismo , Helicasa del Síndrome de Werner/química
11.
F1000Res ; 5: 2536, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27803806

RESUMEN

Lamins are major components of the nuclear lamina, a network of proteins that supports the nuclear envelope in metazoan cells. Over the past decade, biochemical studies have provided support for the view that lamins are not passive bystanders providing mechanical stability to the nucleus but play an active role in the organization of the genome and the function of fundamental nuclear processes. It has also become apparent that lamins are critical for human health, as a large number of mutations identified in the gene that encodes for A-type lamins are associated with tissue-specific and systemic genetic diseases, including the accelerated aging disorder known as Hutchinson-Gilford progeria syndrome. Recent years have witnessed great advances in our understanding of the role of lamins in the nucleus and the functional consequences of disease-associated A-type lamin mutations. Many of these findings have been presented in comprehensive reviews. In this mini-review, we discuss recent breakthroughs in the role of lamins in health and disease and what lies ahead in lamin research.

12.
Sci Rep ; 6: 30999, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27484195

RESUMEN

Myotonic dystrophy type I (DM1) exhibits distinctive disease specific phenotypes and the accelerated onset of a spectrum of age-associated pathologies. In DM1, dominant effects of expanded CUG repeats result in part from the inactivation of the muscleblind-like (MBNL) proteins. To test the role of MBNL3, we deleted Mbnl3 exon 2 (Mbnl3(ΔE2)) in mice and examined the onset of age-associated diseases over 4 to 13 months of age. Accelerated onset of glucose intolerance with elevated insulin levels, cardiac systole deficits, left ventricle hypertrophy, a predictor of a later onset of heart failure and the development of subcapsular and cortical cataracts is observed in Mbnl3(ΔE2) mice. Retention of embryonic splice isoforms in adult organs, a prominent defect in DM1, is not observed in multiple RNAs including the Insulin Receptor (Insr), Cardiac Troponin T (Tnnt2), Lim Domain Binding 3 (Ldb3) RNAs in Mbnl3(ΔE2) mice. Although rare DM1-like splice errors underlying the observed phenotypes cannot be excluded, our data in conjunction with the reported absence of alternative splice errors in embryonic muscles of a similar Mbnl3(ΔE2) mouse by RNA-seq studies, suggest that mechanisms distinct from the adult retention of embryonic splice patterns may make important contributions to the onset of age-associated pathologies in DM1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Empalme Alternativo , Proteínas Portadoras/fisiología , Proteínas con Dominio LIM/genética , Músculo Esquelético/patología , Distrofia Miotónica/patología , Animales , Exones , Regulación del Desarrollo de la Expresión Génica , Intolerancia a la Glucosa , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Distrofia Miotónica/etiología , Distrofia Miotónica/metabolismo , Unión Proteica , Proteínas de Unión al ARN
13.
EBioMedicine ; 2(9): 1034-47, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26501102

RESUMEN

Loss of Muscleblind-like 1 (Mbnl1) is known to alter Clc-1 splicing to result in myotonia. Mbnl1(ΔE3/ΔE3)/Mbnl3(ΔE2) mice, depleted of Mbnl1 and Mbnl3, demonstrate a profound enhancement of myotonia and an increase in the number of muscle fibers with very low Clc-1 currents, where gClmax values approach ~ 1 mS/cm(2), with the absence of a further enhancement in Clc-1 splice errors, alterations in polyA site selection or Clc-1 localization. Significantly, Mbnl1(ΔE3/ΔE3)/Mbnl3(ΔE2) muscles demonstrate an aberrant accumulation of Clc-1 RNA on monosomes and on the first polysomes. Mbnl1 and Mbnl3 bind Clc-1 RNA and both proteins bind Hsp70 and eEF1A, with these associations being reduced in the presence of RNA. Thus binding of Mbnl1 and Mbnl3 to Clc-1 mRNA engaged with ribosomes can facilitate an increase in the local concentration of Hsp70 and eEF1A to assist Clc-1 translation. Dual depletion of Mbnl1 and Mbnl3 therefore initiates both Clc-1 splice errors and translation defects to synergistically enhance myotonia. As the HSA(LR) model for myotonic dystrophy (DM1) shows similar Clc-1 defects, this study demonstrates that both splice errors and translation defects are required for DM1 pathology to manifest. RESEARCH IN CONTEXT: Research in context: Myotonic Dystrophy type 1 (DM1) is a dominant disorder resulting from the expression of expanded CUG repeat RNA, which aberrantly sequesters and inactivates the muscleblind-like (MBNL) family of proteins. In mice, inactivation of Mbnl1 is known to alter Clc-1 splicing to result in myotonia. We demonstrate that concurrent depletion of Mbnl1 and Mbnl3 results in a synergistic enhancement of myotonia, with an increase in muscle fibers showing low chloride currents. The observed synergism results from the aberrant accumulation of Clc-1 mRNA on monosomes and the first polysomes. This translation error reflects the ability of Mbnl1 and Mbnl3 to act as adaptors that recruit Hsp70 and eEF1A to the Clc-1 mRNA engaged with ribosomes, to facilitate translation. Thus our study demonstrates that Clc-1 RNA translation defects work coordinately with Clc-1 splice errors to synergistically enhance myotonia in mice lacking Mbnl1 and Mbnl3.


Asunto(s)
Proteínas Portadoras/genética , Canales de Cloruro/genética , Proteínas de Unión al ADN/genética , Miotonía/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Empalme Alternativo , Animales , Proteínas Portadoras/metabolismo , Línea Celular , Canales de Cloruro/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Immunoblotting , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Miotonía/metabolismo , Miotonía/fisiopatología , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Distrofia Miotónica/fisiopatología , Factor 1 de Elongación Peptídica/metabolismo , Unión Proteica , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribosomas/genética , Ribosomas/metabolismo
14.
Sci Rep ; 5: 9042, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25761764

RESUMEN

Cardiac dysfunction is a prominent cause of mortality in myotonic dystrophy I (DM1), a disease where expanded CUG repeats bind and disable the muscleblind-like family of splice regulators. Deletion of muscleblind-like 1 (Mbnl1(ΔE2/ΔE2)) in 129 sv mice results in QRS, QTc widening, bundle block and STc narrowing at 2-4 months of age. With time, cardiac function deteriorates further and at 6 months, decreased R wave amplitudes, sinus node dysfunction, cardiac hypertrophy, interstitial fibrosis, multi-focal myocardial fiber death and calcification manifest. Sudden death, where no end point illness is overt, is observed at a median age of 6.5 and 4.8 months in ~67% and ~86% of male and female Mbnl1(ΔE2/ΔE2) mice, respectively. Mbnl1 depletion results in the persistence of embryonic splice isoforms in a network of cardiac RNAs, some of which have been previously implicated in DM1, regulating sodium and calcium currents, Scn5a, Junctin, Junctate, Atp2a1, Atp11a, Cacna1s, Ryr2, intra and inter cellular transport, Clta, Stx2, Tjp1, cell survival, Capn3, Sirt2, Csda, sarcomere and cytoskeleton organization and function, Trim55, Mapt, Pdlim3, Pdlim5, Sorbs1, Sorbs2, Fhod1, Spag9 and structural components of the sarcomere, Myom1, Tnnt2, Zasp. Thus this study supports a key role for Mbnl1 loss in the initiation of DM1 cardiac disease.


Asunto(s)
Empalme Alternativo , Eliminación de Gen , Distrofia Miotónica/genética , Isoformas de ARN , Proteínas de Unión al ARN/genética , Animales , Arritmia Sinusal , Calcinosis , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Modelos Animales de Enfermedad , Electrocardiografía , Femenino , Fibrosis , Expresión Génica , Orden Génico , Marcación de Gen , Sitios Genéticos , Longevidad/genética , Masculino , Ratones , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , Distrofia Miotónica/fisiopatología , Fenotipo
15.
Aging Cell ; 13(2): 367-78, 2014 04.
Artículo en Inglés | MEDLINE | ID: mdl-24757718

RESUMEN

The Werner syndrome protein (WRN) is a nuclear protein required for cell growth and proliferation. Loss-of-function mutations in the Werner syndrome gene are associated with the premature onset of age-related diseases. How loss of WRN limits cell proliferation and induces replicative senescence is poorly understood. Here, we show that WRN depletion leads to a striking metabolic shift that coordinately weakens the pathways that generate reducing equivalents for detoxification of reactive oxygen species and increases mitochondrial respiration. In cancer cells, this metabolic shift counteracts the Warburg effect, a defining characteristic of many malignant cells, resulting in altered redox balance and accumulation of oxidative DNA damage that inhibits cell proliferation and induces a senescence-like phenotype. Consistent with these findings, supplementation with antioxidant rescues at least in part cell proliferation and decreases senescence in WRN-knockdown cancer cells. These results demonstrate that WRN plays a critical role in cancer cell proliferation by contributing to the Warburg effect and preventing metabolic stress.


Asunto(s)
Regulación hacia Abajo/genética , Exodesoxirribonucleasas/genética , Homeostasis , Neoplasias/metabolismo , Neoplasias/patología , RecQ Helicasas/genética , Animales , Antioxidantes/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Daño del ADN , Regulación hacia Abajo/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Exodesoxirribonucleasas/metabolismo , Técnicas de Silenciamiento del Gen , Glutatión/metabolismo , Glutatión/farmacología , Homeostasis/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Sustancias Macromoleculares/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Niacinamida/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , RecQ Helicasas/metabolismo , Síndrome de Werner/genética , Helicasa del Síndrome de Werner
16.
PLoS One ; 7(11): e48825, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23166594

RESUMEN

Myotonic dystrophy (DM1) is a highly variable, multi-system disorder resulting from the expansion of an untranslated CTG tract in DMPK. In DM1 expanded CUG repeat RNAs form hairpin secondary structures that bind and aberrantly sequester the RNA splice regulator, MBNL1. RNA splice defects resulting as a consequence of MBNL1 depletion have been shown to play a key role in the development of DM1 pathology. In patient populations, both the number and severity of DM1 symptoms increase broadly as a function of CTG tract length. However significant variability in the DM1 phenotype is observed in patients encoding similar CTG repeat numbers. Here we demonstrate that a gradual decrease in MBNL1 levels results both in the expansion of the repertoire of splice defects and an increase in the severity of the splice alterations. Thus, MBNL1 loss does not have an all or none outcome but rather shows a graded effect on the number and severity of the ensuing splice defects. Our results suggest that once a critical threshold is reached, relatively small dose variations of free MBNL1 levels, which may reflect modest changes in the size of the CUG tract or the extent of hairpin secondary structure formation, can significantly alter the number and severity of splice abnormalities and thus contribute to the phenotype variability observed in DM1 patients.


Asunto(s)
Distrofia Miotónica/genética , Fenotipo , Empalme del ARN/genética , Proteínas de Unión al ARN/metabolismo , Western Blotting , Semivida , Humanos , Músculo Esquelético/metabolismo , Distrofia Miotónica/patología , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Expansión de Repetición de Trinucleótido/genética
17.
Aging (Albany NY) ; 4(8): 567-77, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22948034

RESUMEN

Small increases in the expression of wild-type prelamin A are sufficient to recapitulate the reduced cell proliferation and altered nuclear membrane morphology observed in cells expressing progerin, the mutant lamin A associated with progeria. We hypothesized that the manifestation of these phenotypes in cells expressing elevated levels of wild-type prelamin A or progerin is caused by the same molecular effectors, which play a central role in the onset of the progeroid phenotype. To experimentally test this hypothesis, we compared the transcriptomes of isogenic diploid fibroblasts expressing progerin or elevated levels of wild-type prelamin A with that of wild-type fibroblasts. We subsequently used the reversion towards normal of two phenotypes, reduced cell growth and dismorphic nuclei, by treatment with farnesyltransferase inhibitor (FTI) or overexpression of ZMPSTE24, as a filtering strategy to identify genes linked to the onset of these two phenotypes. Through this analysis we identified the gene encoding for the transcription factor FOXQ1, as a gene whose expression is induced in both cells expressing progerin and elevated levels of wild-type prelamin A, and subsequently reduced in both cell types upon conditions that ameliorate the phenotypes. We overexpressed FOXQ1 in normal fibroblasts and demonstrated that increased levels of this factor lead to the development of both features that were used in the filtering strategy. These findings suggest a potential link between this transcription factor and cell dysfunction induced by altered prelamin A metabolism.


Asunto(s)
Farnesiltransferasa/antagonistas & inhibidores , Fibroblastos/citología , Factores de Transcripción Forkhead/genética , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Proteínas Nucleares/metabolismo , Progeria/genética , Precursores de Proteínas/metabolismo , Línea Celular , Fibroblastos/metabolismo , Factores de Transcripción Forkhead/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Lamina Tipo A , Membrana Nuclear/metabolismo , Progeria/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Exp Cell Res ; 318(1): 1-7, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21871450

RESUMEN

Lamin A is a component of the nuclear envelope that is synthesized as a precursor prelamin A molecule and then processed into mature lamin A through sequential steps of posttranslational modifications and proteolytic cleavages. Remarkably, over 400 distinct point mutations have been so far identified throughout the LMNA gene, which result in the development of at least ten distinct human disorders, collectively known as laminopathies, among which is the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). The majority of HGPS cases are associated with a single point mutation in the LMNA gene that causes the production of a permanently farnesylated mutant lamin A protein termed progerin. The mechanism by which progerin leads to premature aging and the classical HGPS disease phenotype as well as the relationship between this disorder and the onset of analogous symptoms during the lifespan of a normal individual are not well understood. Yet, recent studies have provided critical insights on the cellular processes that are affected by accumulation of progerin and have suggested that cellular alterations in the lamin A processing pathway leading to the accumulation of farnesylated prelamin A intermediates may play a role in the aging process in the general population. In this review we provide a short background on lamin A and its maturation pathway and discuss the current knowledge of how progerin or alterations in the prelamin A processing pathway are thought to influence cell function and contribute to human aging.


Asunto(s)
Envejecimiento , Lamina Tipo A/metabolismo , Prenilación , Animales , Humanos , Lamina Tipo A/genética , Proteínas Nucleares/metabolismo , Progeria/genética , Progeria/metabolismo , Precursores de Proteínas/metabolismo
19.
J Biol Chem ; 286(44): 38427-38438, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21900255

RESUMEN

To understand the role of the splice regulator muscleblind 1 (MBNL1) in the development of RNA splice defects in myotonic dystrophy I (DM1), we purified RNA-independent MBNL1 complexes from normal human myoblasts and examined the behavior of these complexes in DM1 myoblasts. Antibodies recognizing MBNL1 variants (MBNL1(CUG)), which can sequester in the toxic CUG RNA foci that develop in DM1 nuclei, were used to purify MBNL1(CUG) complexes from normal myoblasts. In normal myoblasts, MBNL1(CUG) bind 10 proteins involved in remodeling ribonucleoprotein complexes including hnRNP H, H2, H3, F, A2/B1, K, L, DDX5, DDX17, and DHX9. Of these proteins, only MBNL1(CUG) colocalizes extensively with DM1 CUG foci (>80% of foci) with its partners being present in <10% of foci. Importantly, the stoichiometry of MBNL1(CUG) complexes is altered in DM1 myoblasts, demonstrating an increase in the steady state levels of nine of its partner proteins. These changes are recapitulated by the expression of expanded CUG repeat RNA in Cos7 cells. Altered stoichiometry of MBNL1(CUG) complexes results from aberrant protein synthesis or stability and is unlinked to PKCα function. Modeling these changes in normal myoblasts demonstrates that increased levels of hnRNP H, H2, H3, F, and DDX5 independently dysregulate splicing in overlapping RNA subsets. Thus expression of expanded CUG repeats alters the stoichiometry of MBNL1(CUG) complexes to allow both the reinforcement and expansion of RNA processing defects.


Asunto(s)
Distrofia Miotónica/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Inmunoprecipitación , Espectrometría de Masas/métodos , Músculo Esquelético/metabolismo , Distrofia Miotónica/genética , Mapeo de Interacción de Proteínas/métodos , ARN Interferente Pequeño/metabolismo , Fracciones Subcelulares
20.
EMBO Rep ; 12(7): 735-42, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21637295

RESUMEN

We describe a new mechanism by which CTG tract expansion affects myotonic dystrophy (DM1). Changes to the levels of a panel of RNAs involved in muscle development and function that are downregulated in DM1 are due to aberrant localization of the transcription factor SHARP (SMART/HDAC1-associated repressor protein). Mislocalization of SHARP in DM1 is consistent with increased CRM1-mediated export of SHARP to the cytoplasm. A direct link between CTG repeat expression and SHARP mislocalization is demonstrated as expression of expanded CTG repeats in normal cells recapitulates cytoplasmic SHARP localization. These results demonstrate a role for the inactivation of SHARP transcription in DM1 biology.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Homeodominio/metabolismo , Distrofia Miotónica/fisiopatología , Proteínas Nucleares/metabolismo , ARN/metabolismo , Antibióticos Antineoplásicos/farmacología , Citoplasma/metabolismo , Proteínas de Unión al ADN , Ácidos Grasos Insaturados/farmacología , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Mioblastos/metabolismo , Distrofia Miotónica/genética , Proteínas Nucleares/genética , Transporte de Proteínas/efectos de los fármacos , Empalme del ARN/genética , Proteínas de Unión al ARN/metabolismo , Expansión de Repetición de Trinucleótido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...