Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 11(3)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35326791

RESUMEN

Multiple-antibiotic-resistant (MAR) extra-intestinal pathogenic Escherichia coli (ExPEC) represents one of the most frequent causes of human nosocomial and community-acquired infections, whose eradication is of major concern for clinicians. ExPECs may inhabit indefinitely as commensal the gut of humans and other animals; from the intestine, they may move to colonize other tissues, where they are responsible for a number of diseases, including recurrent and uncomplicated UTIs, sepsis and neonatal meningitis. In the pre-antibiotic era, heavy metals were largely used as chemotherapeutics and/or as antimicrobials in human and animal healthcare. As with antibiotics, the global incidence of heavy metal tolerance in commensal, as well as in ExPEC, has increased following the ban in several countries of antibiotics as promoters of animal growth. Furthermore, it is believed that extensive bacterial exposure to heavy metals present in soil and water might have favored the increase in heavy-metal-tolerant microorganisms. The isolation of ExPEC strains with combined resistance to both antibiotics and heavy metals has become quite common and, remarkably, it has been recently shown that heavy metal resistance genes may co-select antibiotic-resistance genes. Despite their clinical relevance, the mechanisms underlining the development and spread of heavy metal tolerance have not been fully elucidated. The aim of this review is to present data regarding the development and spread of resistance to first-line antibiotics, such as beta-lactams, as well as tolerance to heavy metals in ExPEC strains.

2.
Res Vet Sci ; 132: 150-155, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32585472

RESUMEN

Multiple antibiotic-resistant extra-intestinal pathogenic Escherichia coli (ExPEC) strains represent a serious health care problem both for poultry and humans. Recently isolates with combined resistance to both antibiotics and heavy metals have been increased worldwide, with growing concern for possible co-selection of antimicrobial resistant genes. In the present study we characterized, at a phenotypic and genetic level, 80 E. coli isolates: forty independent isolates were collected from manure samples of healthy chickens and 40 from independent human extra-intestinal infections (ExPEC strains). The results obtained indicated that i) compared to chicken, human isolates presented a broader spectrum of antibiotic resistance and virulence potentials; ii) although at a lower extent, ExPEC-associated virulence genes were also present in chicken isolates, suggesting they may be potentially pathogens; iii) that arsenic (As) and zinc (Zn) tolerance genetic determinants were significantly more prevalent among chicken and human isolates respectively, while those responsible for tolerance to cadmium (Cd), silver (Ag) and copper (Cu) were equally distributed among the two groups of strains; iv) a very strong correlation was found between chicken gentamicin (GM) resistance and cadmium (Cd) tolerance. Elucidating the role of heavy metals in the selection and spread of highly pathogenic E. coli strains (co-selection) is of primary importance to lower the potential risk of infections in poultry and humans. The control of bacterial zoonotic agents, that commonly occur in livestock and that may be transmitted, directly or via the food chain, to human populations, could be of relevant interest.


Asunto(s)
Pollos , Farmacorresistencia Bacteriana/genética , Escherichia coli Enteropatógena/fisiología , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/microbiología , Enfermedades de las Aves de Corral/microbiología , Animales , Antibacterianos/farmacología , Escherichia coli Enteropatógena/genética , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/veterinaria , Marcadores Genéticos , Humanos , Metales Pesados/farmacología , Filogenia , Enfermedades de las Aves de Corral/genética , Virulencia
3.
Microb Pathog ; 126: 323-331, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30458252

RESUMEN

Many essential oils (EOs) are screened as potential sources of antimicrobial compounds. EOs from the genus Satureja have recognized biological properties, including analgesic, anti-inflammatory, immunomodulatory, anticancer, and antimicrobial activity. This study aimed to obtain a metabolite profile of commercial essential oil of S. montana L. (SEO) and to evaluate its antimicrobial properties, both alone and combined with gentamicin towards Gram-negative and Gram-positive bacterial strains. Untargeted analyses based on direct infusion Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and on GC-MS have provided a high metabolome coverage, allowing to identify carvacrol, cymene and thymol as the major components of commercial SEO. SEO exerted an antimicrobial activity and induced a synergistic interaction with gentamicin against both reference and clinical bacterial strains. A significant reduction of Escherichia coli, Staphylococcus aureus and Listeria monocytogenes biofilm formation was induced by SEO. As a result of SEO treatment, clear morphological bacterial alterations were visualized by scanning electron microscopy: L. monocytogenes and S. aureus showed malformed cell surface or broken cells with pores formation, whereas E. coli displayed collapsed cell surface. These results encourage further studies about bactericidal and antibiotic synergistic effect of SEO for combined therapy in clinical setting as well as in agricultural systems.


Asunto(s)
Antiinfecciosos/farmacología , Gentamicinas/farmacología , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Aceites de Plantas/farmacología , Satureja/química , Biopelículas/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cimenos , Combinación de Medicamentos , Sinergismo Farmacológico , Cromatografía de Gases y Espectrometría de Masas , Bacterias Gramnegativas/citología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/citología , Bacterias Grampositivas/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Monoterpenos/aislamiento & purificación , Monoterpenos/farmacología , Aceites Volátiles/química , Aceites de Plantas/química , Timol/aislamiento & purificación , Timol/farmacología
4.
Microbiologyopen ; 8(6): e00756, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30381890

RESUMEN

Urinary tract infections (UTIs) are among the most common bacterial infections in humans. Although a number of bacteria can cause UTIs, most cases are due to infection by uropathogenic Escherichia coli (UPEC). UPEC are a genetically heterogeneous group that exhibit several virulence factors associated with colonization and persistence of bacteria in the urinary tract. Caenorhabditis elegans is a tiny, free-living nematode found worldwide. Because many biological pathways are conserved in C. elegans and humans, the nematode has been increasingly used as a model organism to study virulence mechanisms of microbial infections and innate immunity. The virulence of UPEC strains, characterized for antimicrobial resistance, pathogenicity-related genes associated with virulence and phylogenetic group belonging was evaluated by measuring the survival of C. elegans exposed to pure cultures of these strains. Our results showed that urinary strains can kill the nematode and that the clinical isolate ECP110 was able to efficiently colonize the gut and to inhibit the host oxidative response to infection. Our data support that C. elegans, a free-living nematode found worldwide, could serve as an in vivo model to distinguish, among uropathogenic E. coli, different virulence behavior.


Asunto(s)
Caenorhabditis elegans/microbiología , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/microbiología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/patogenicidad , Animales , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Filogenia , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/fisiología , Virulencia
5.
Nat Prod Commun ; 12(4): 623-626, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30520610

RESUMEN

Coriander (Coriandruim sativum L., Apiaceae) is known for its antimicrobial activity and the aim of this study was to investigate the effect of its essential oil (CDO) against multidrug resistant uropathogenic Escherichia coli (UPEC). CDO was able to inhibit the growth of UPEC strains and propidium iodide uptake, - and electron microscopy examination suggested that bacterial structural modifications occurred. The presence of CDO reduced the MIC of gentamicin. E.coli adhesion efficiency on cell monolayers and abiotic surfaces was not affected by subMIC oil concentrations; furthermore, CDO showed cytotoxic activity towards the HEp-2 tumor cell line. These findings contribute to the knowledge about essential oils as sources of potential antimicrobial agents against uropathogenic E. coli and encourage further investigations.


Asunto(s)
Antibacterianos/farmacología , Coriandrum/química , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Escherichia coli Uropatógena/efectos de los fármacos , Antibacterianos/química , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Escherichia coli Uropatógena/crecimiento & desarrollo
6.
New Microbiol ; 39(2): 146-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27196555

RESUMEN

RWPE-1 normal prostate cells were tested as an experimental model for adhesion/invasion assays by genotypically and phenotypically characterized community uropathogenic strains of Escherichia coli (UPEC), a frequent cause of urinary tract infections (UTIs) and significant etiologic agent also in bacterial prostatitis. Adhesive ability and strong biofilm production was significantly associated with the bacterial invasive phenotype. Invasive strains derived mainly from male and pediatric patients. This study suggests that such a cell model could usefully integrate other available methods of urovirulence analysis, to deepen knowledge on the bacterial interaction with host cells.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Próstata/citología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/fisiología , Adolescente , Adulto , Adhesión Bacteriana/fisiología , Línea Celular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Escherichia coli Uropatógena/clasificación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA