Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 10(6): 2212-2221, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743643

RESUMEN

Previous studies have shown that bicyclic azetidines are potent and selective inhibitors of apicomplexan phenylalanine tRNA synthetase (PheRS), leading to parasite growth inhibition in vitro and in vivo, including in models of Toxoplasma infection. Despite these useful properties, additional optimization is required for the development of efficacious treatments of toxoplasmosis from this inhibitor series, in particular, to achieve optimal exposure in the brain. Here, we describe a series of PheRS inhibitors built on a new bicyclic pyrrolidine core scaffold designed to retain the exit-vector geometry of the isomeric bicyclic azetidine core scaffold while offering avenues to sample diverse chemical space. Relative to the parent series, bicyclic pyrrolidines retain reasonable potency and target selectivity for parasite PheRS vs host. Further structure-activity relationship studies revealed that the introduction of aliphatic groups improved potency and ADME and PK properties, including brain exposure. The identification of this new scaffold provides potential opportunities to extend the analogue series to further improve selectivity and potency and ultimately deliver a novel, efficacious treatment of toxoplasmosis.


Asunto(s)
Encéfalo , Fenilalanina-ARNt Ligasa , Pirrolidinas , Toxoplasma , Toxoplasma/efectos de los fármacos , Toxoplasma/enzimología , Pirrolidinas/farmacología , Pirrolidinas/química , Animales , Encéfalo/parasitología , Relación Estructura-Actividad , Fenilalanina-ARNt Ligasa/antagonistas & inhibidores , Fenilalanina-ARNt Ligasa/química , Antiparasitarios/farmacología , Antiparasitarios/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Ratones , Toxoplasmosis/tratamiento farmacológico , Humanos , Azetidinas/farmacología , Azetidinas/química
2.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464220

RESUMEN

Previous studies have shown that bicyclic azetidines are potent and selective inhibitors of apicomplexan phenylalanine tRNA synthetase (PheRS), leading to parasite growth inhibition in vitro and in vivo, including in models of Toxoplasma infection. Despite these useful properties, additional optimization is required for the development of efficacious treatments of toxoplasmosis from this inhibitor series, in particular to achieve sufficient exposure in the brain. Here, we describe a series of PheRS inhibitors built on a new bicyclic pyrrolidine core scaffold designed to retain the exit-vector geometry of the isomeric bicyclic azetidine core scaffold while offering avenues to sample diverse chemical space. Relative to the parent series, bicyclic pyrrolidines retain reasonable potency and target selectivity for parasite PheRS vs. host. Further structure-activity relationship studies revealed that the introduction of aliphatic groups improved potency, ADME and PK properties, including brain exposure. The identification of this new scaffold provides potential opportunities to extend the analog series to further improve selectivity and potency and ultimately deliver a novel, efficacious treatment of toxoplasmosis.

3.
Structure ; 30(7): 962-972.e3, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35460612

RESUMEN

Bicyclic azetidine compounds possess antimalarial activity via targeting of the cytoplasmic Plasmodium falciparum (Pf) protein translation enzyme phenylalanine-tRNA synthetase (cFRS). These drugs kill parasites both in vitro and in vivo, including the blood, liver, and transmission developmental stages. Here we present the co-crystal structure of PfcFRS with a potent inhibitor, the bicyclic azetidine BRD7929. Our studies reveal high-affinity binding of BRD7929 with PfcFRS along with exquisite specificity compared with the human enzyme, leading in turn to potent and selective inhibition of the parasite enzyme. Our co-crystal structure shows that BRD7929 binds in the active site in the α subunit of PfcFRS, where it occupies the amino acid site, an auxiliary site, and partially the ATP site. This structural snapshot of inhibitor-bound PfcFRS thus provides a platform for the structure-guided optimization of novel antimalarial compounds.


Asunto(s)
Aminoacil-ARNt Sintetasas , Antimaláricos , Azetidinas , Antimaláricos/química , Antimaláricos/farmacología , Humanos , Fenilalanina , Plasmodium falciparum/genética
4.
Nat Commun ; 13(1): 459, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075105

RESUMEN

Toxoplasma gondii commonly infects humans and while most infections are controlled by the immune response, currently approved drugs are not capable of clearing chronic infection in humans. Hence, approximately one third of the world's human population is at risk of reactivation, potentially leading to severe sequelae. To identify new candidates for treating chronic infection, we investigated a series of compounds derived from diversity-oriented synthesis. Bicyclic azetidines are potent low nanomolar inhibitors of phenylalanine tRNA synthetase (PheRS) in T. gondii, with excellent selectivity. Biochemical and genetic studies validate PheRS as the primary target of bicyclic azetidines in T. gondii, providing a structural basis for rational design of improved analogs. Favorable pharmacokinetic properties of a lead compound provide excellent protection from acute infection and partial protection from chronic infection in an immunocompromised mouse model of toxoplasmosis. Collectively, PheRS inhibitors of the bicyclic azetidine series offer promise for treatment of chronic toxoplasmosis.


Asunto(s)
Antiprotozoarios/administración & dosificación , Azetidinas/administración & dosificación , Inhibidores Enzimáticos/administración & dosificación , Fenilalanina-ARNt Ligasa/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Toxoplasma/efectos de los fármacos , Toxoplasma/enzimología , Toxoplasmosis/tratamiento farmacológico , Animales , Antiprotozoarios/química , Azetidinas/química , Inhibidores Enzimáticos/química , Femenino , Humanos , Cinética , Masculino , Ratones , Ratones Endogámicos CBA , Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Toxoplasma/genética , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis/parasitología
5.
Nat Commun ; 12(1): 343, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436639

RESUMEN

The inhibition of Plasmodium cytosolic phenylalanine tRNA-synthetase (cFRS) by a novel series of bicyclic azetidines has shown the potential to prevent malaria transmission, provide prophylaxis, and offer single-dose cure in animal models of malaria. To date, however, the molecular basis of Plasmodium cFRS inhibition by bicyclic azetidines has remained unknown. Here, we present structural and biochemical evidence that bicyclic azetidines are competitive inhibitors of L-Phe, one of three substrates required for the cFRS-catalyzed aminoacylation reaction that underpins protein synthesis in the parasite. Critically, our co-crystal structure of a PvcFRS-BRD1389 complex shows that the bicyclic azetidine ligand binds to two distinct sub-sites within the PvcFRS catalytic site. The ligand occupies the L-Phe site along with an auxiliary cavity and traverses past the ATP binding site. Given that BRD1389 recognition residues are conserved amongst apicomplexan FRSs, this work lays a structural framework for the development of drugs against both Plasmodium and related apicomplexans.


Asunto(s)
Azetidinas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Malaria/enzimología , Parásitos/enzimología , Fenilalanina-ARNt Ligasa/antagonistas & inhibidores , Fenilalanina-ARNt Ligasa/química , Plasmodium falciparum/enzimología , Secuencia de Aminoácidos , Aminoacilación , Animales , Dominio Catalítico , Citosol/enzimología , Resistencia a Medicamentos/genética , Modelos Moleculares , Mutación/genética , Fenilalanina/metabolismo , Fenilalanina-ARNt Ligasa/metabolismo , Plasmodium falciparum/efectos de los fármacos
6.
Sci Transl Med ; 12(563)2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32998973

RESUMEN

Cryptosporidium is a protozoan parasite and a leading cause of diarrheal disease and mortality in young children. Currently, there are no fully effective treatments available to cure infection with this diarrheal pathogen. In this study, we report a broad drug repositioning effort that led to the identification of bicyclic azetidines as a new anticryptosporidial series. Members of this series blocked growth in in vitro culture of three Cryptosporidium parvum isolates with EC50 's in 1% serum of <0.4 to 96 nM, had comparable potencies against Cryptosporidium hominis and C. parvum, and was effective in three of four highly susceptible immunosuppressed mice with once-daily dosing administered for 4 days beginning 2 weeks after infection. Comprehensive genetic, biochemical, and chemical studies demonstrated inhibition of C. parvum phenylalanyl-tRNA synthetase (CpPheRS) as the mode of action of this new lead series. Introduction of mutations directly into the C. parvum pheRS gene by CRISPR-Cas9 genome editing resulted in parasites showing high degrees of compound resistance. In vitro, bicyclic azetidines potently inhibited the aminoacylation activity of recombinant ChPheRS. Medicinal chemistry optimization led to the identification of an optimal pharmacokinetic/pharmacodynamic profile for this series. Collectively, these data demonstrate that bicyclic azetidines are a promising series for anticryptosporidial drug development and establish a broad framework to enable target-based drug discovery for this infectious disease.


Asunto(s)
Azetidinas , Criptosporidiosis , Cryptosporidium , Parásitos , Fenilalanina-ARNt Ligasa , Animales , Azetidinas/farmacología , Criptosporidiosis/tratamiento farmacológico , Diarrea , Ratones
7.
Medchemcomm ; 9(11): 1831-1842, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30542533

RESUMEN

Increased expression of the Tribbles pseudokinase 1 gene (TRIB1) is associated with lower plasma levels of LDL cholesterol and triglycerides, higher levels of HDL cholesterol and decreased risk of coronary artery disease and myocardial infarction. We identified a class of tricyclic glycal core-based compounds that upregulate TRIB1 expression in human HepG2 cells and phenocopy the effects of genetic TRIB1 overexpression as they inhibit expression of triglyceride synthesis genes and ApoB secretion in cells. In addition to predicted effects related to downregulation of VLDL assembly and secretion these compounds also have unexpected effects as they upregulate expression of LDLR and stimulate LDL uptake. This activity profile is unique and favorably differs from profiles produced by statins or other lipoprotein targeting therapies. BRD8518, the initial lead compound from the tricyclic glycal class, exhibited stereochemically dependent activity and the potency far exceeding previously described benzofuran BRD0418. Gene expression profiling of cells treated with BRD8518 demonstrated the anticipated changes in lipid metabolic genes and revealed a broad stimulation of early response genes. Consistently, we found that BRD8518 activity is MEK1/2 dependent and the treatment of HepG2 cells with BRD8518 stimulates ERK1/2 phosphorylation. In agreement with down-regulation of genes controlling triglyceride synthesis and assembly of lipoprotein particles, the mass spectrometry analysis of cell extracts showed reduced rate of incorporation of stable isotope labeled glycerol into triglycerides in BRD8518 treated cells. Furthermore, we describe medicinal chemistry efforts that led to identification of BRD8518 analogs with enhanced potency and pharmacokinetic properties suitable for in vivo studies.

8.
Cell Chem Biol ; 25(12): 1506-1518.e13, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30318461

RESUMEN

Apart from their antimicrobial properties, tetracyclines demonstrate clinically validated effects in the amelioration of pathological inflammation and human cancer. Delineation of the target(s) and mechanism(s) responsible for these effects, however, has remained elusive. Here, employing quantitative mass spectrometry-based proteomics, we identified human 80S ribosomes as targets of the tetracyclines Col-3 and doxycycline. We then developed in-cell click selective crosslinking with RNA sequence profiling (icCL-seq) to map binding sites for these tetracyclines on key human rRNA substructures at nucleotide resolution. Importantly, we found that structurally and phenotypically variant tetracycline analogs could chemically discriminate these rRNA binding sites. We also found that tetracyclines both subtly modify human ribosomal translation and selectively activate the cellular integrated stress response (ISR). Together, the data reveal that targeting of specific rRNA substructures, activation of the ISR, and inhibition of translation are correlated with the anti-proliferative properties of tetracyclines in human cancer cell lines.


Asunto(s)
Biosíntesis de Proteínas/efectos de los fármacos , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Tetraciclinas/farmacología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , ARN Ribosómico/genética , Relación Estructura-Actividad , Tetraciclinas/química
9.
ACS Infect Dis ; 4(10): 1499-1507, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30058798

RESUMEN

Toxoplasma gondii is an obligate intracellular parasite capable of causing severe disease due to congenital infection and in patients with compromised immune systems. Control of infection is dependent on a robust Th1 type immune response including production of interferon gamma (IFN-γ), which is essential for control. IFN-γ activates a variety of antimicrobial mechanisms in host cells, which are then able to control intracellular parasites such as T. gondii. Despite the effectiveness of these pathways in controlling acute infection, the immune system is unable to eradicate chronic infections that can persist for life. Similarly, while antibiotic treatment can control acute infection, it is unable to eliminate chronic infection. To identify compounds that would act synergistically with IFN-γ, we performed a high-throughput screen of diverse small molecule libraries to identify inhibitors of T. gondii. We identified a number of compounds that inhibited parasite growth in vitro at low µM concentrations and that demonstrated enhanced potency in the presence of a low level of IFN-γ. A subset of these compounds act by enhancing the recruitment of light chain 3 (LC3) to the parasite-containing vacuole, suggesting they work by an autophagy-related process, while others were independent of this pathway. The pattern of IFN-γ dependence was shared among the majority of analogs from 6 priority scaffolds, and analysis of structure activity relationships for one such class revealed specific stereochemistry associated with this feature. Identification of these IFN-γ-dependent leads may lead to development of improved therapeutics due to their synergistic interactions with immune responses.


Asunto(s)
Inhibidores de Crecimiento/análisis , Inhibidores de Crecimiento/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Interferón gamma/metabolismo , Toxoplasma/crecimiento & desarrollo , Autofagia/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Inhibidores de Crecimiento/química , Células HeLa , Humanos , Inmunidad Innata , Modelos Lineales , Luciferasas/análisis , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica , Bibliotecas de Moléculas Pequeñas , Estereoisomerismo , Células TH1/inmunología , Vacuolas/metabolismo
10.
J Am Chem Soc ; 139(32): 11300-11306, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28732448

RESUMEN

The development of new antimalarial therapeutics is necessary to address the increasing resistance to current drugs. Bicyclic azetidines targeting Plasmodium falciparum phenylalanyl-tRNA synthetase comprise one promising new class of antimalarials, especially due to their activities against three stages of the parasite's life cycle, but a lengthy synthetic route to these compounds may affect the feasibility of delivering new therapeutic agents within the cost constraints of antimalarial drugs. Here, we report an efficient synthesis of antimalarial compound BRD3914 (EC50 = 15 nM) that hinges on a Pd-catalyzed, directed C(sp3)-H arylation of azetidines at the C3 position. This newly developed protocol exhibits a broad substrate scope and provides access to valuable, stereochemically defined building blocks. BRD3914 was evaluated in P. falciparum-infected mice, providing a cure after four oral doses.


Asunto(s)
Antimaláricos/síntesis química , Antimaláricos/uso terapéutico , Azetidinas/síntesis química , Azetidinas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/química , Antimaláricos/farmacología , Azetidinas/química , Azetidinas/farmacología , Compuestos Bicíclicos con Puentes/síntesis química , Compuestos Bicíclicos con Puentes/química , Compuestos Bicíclicos con Puentes/farmacología , Compuestos Bicíclicos con Puentes/uso terapéutico , Catálisis , Modelos Animales de Enfermedad , Células Hep G2 , Humanos , Ratones Endogámicos NOD , Ratones SCID , Paladio/química , Estereoisomerismo
11.
Nature ; 538(7625): 344-349, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27602946

RESUMEN

Antimalarial drugs have thus far been chiefly derived from two sources-natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are underrepresented in typical screening collections. We report the identification of such compounds with both previously reported and undescribed mechanisms of action, including a series of bicyclic azetidines that inhibit a new antimalarial target, phenylalanyl-tRNA synthetase. These molecules are curative in mice at a single, low dose and show activity against all parasite life stages in multiple in vivo efficacy models. Our findings identify bicyclic azetidines with the potential to both cure and prevent transmission of the disease as well as protect at-risk populations with a single oral dose, highlighting the strength of diversity-oriented synthesis in revealing promising therapeutic targets.


Asunto(s)
Antimaláricos/síntesis química , Antimaláricos/farmacología , Azetidinas/uso terapéutico , Descubrimiento de Drogas , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Animales , Antimaláricos/administración & dosificación , Antimaláricos/uso terapéutico , Compuestos de Azabiciclo/administración & dosificación , Compuestos de Azabiciclo/síntesis química , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , Azetidinas/administración & dosificación , Azetidinas/efectos adversos , Azetidinas/farmacología , Citosol/enzimología , Modelos Animales de Enfermedad , Femenino , Hígado/efectos de los fármacos , Hígado/parasitología , Macaca mulatta/parasitología , Malaria Falciparum/prevención & control , Malaria Falciparum/transmisión , Masculino , Ratones , Fenilalanina-ARNt Ligasa/antagonistas & inhibidores , Compuestos de Fenilurea/administración & dosificación , Compuestos de Fenilurea/síntesis química , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Plasmodium falciparum/citología , Plasmodium falciparum/enzimología , Seguridad
12.
ACS Infect Dis ; 2(4): 281-293, 2016 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-27275010

RESUMEN

In order to identify the most attractive starting points for drugs that can be used to prevent malaria, a diverse chemical space comprising tens of thousands to millions of small molecules may need to be examined. Achieving this throughput necessitates the development of efficient ultra-high-throughput screening methods. Here, we report the development and evaluation of a luciferase-based phenotypic screen of malaria exoerythrocytic-stage parasites optimized for a 1536-well format. This assay uses the exoerythrocytic stage of the rodent malaria parasite, Plasmodium berghei, and a human hepatoma cell line. We use this assay to evaluate several biased and unbiased compound libraries, including two small sets of molecules (400 and 89 compounds, respectively) with known activity against malaria erythrocytic-stage parasites and a set of 9886 diversity-oriented synthesis (DOS)-derived compounds. Of the compounds screened, we obtain hit rates of 12-13 and 0.6% in preselected and naïve libraries, respectively, and identify 52 compounds with exoerythrocytic-stage activity less than 1 µM and having minimal host cell toxicity. Our data demonstrate the ability of this method to identify compounds known to have causal prophylactic activity in both human and animal models of malaria, as well as novel compounds, including some exclusively active against parasite exoerythrocytic stages.

13.
Cell Host Microbe ; 19(1): 114-26, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26749441

RESUMEN

Preventing transmission is an important element of malaria control. However, most of the current available methods to assay for malaria transmission blocking are relatively low throughput and cannot be applied to large chemical libraries. We have developed a high-throughput and cost-effective assay, the Saponin-lysis Sexual Stage Assay (SaLSSA), for identifying small molecules with transmission-blocking capacity. SaLSSA analysis of 13,983 unique compounds uncovered that >90% of well-characterized antimalarials, including endoperoxides and 4-aminoquinolines, as well as compounds active against asexual blood stages, lost most of their killing activity when parasites developed into metabolically quiescent stage V gametocytes. On the other hand, we identified compounds with consistent low nanomolar transmission-blocking activity, some of which showed cross-reactivity against asexual blood and liver stages. The data clearly emphasize substantial physiological differences between sexual and asexual parasites and provide a tool and starting points for the discovery and development of transmission-blocking drugs.


Asunto(s)
Antimaláricos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Malaria/parasitología , Plasmodium falciparum/efectos de los fármacos , Humanos , Malaria/transmisión , Plasmodium falciparum/fisiología
14.
PLoS Negl Trop Dis ; 9(9): e0004094, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26407168

RESUMEN

Visceral leishmaniasis is an important parasitic disease of the developing world with a limited arsenal of drugs available for treatment. The existing drugs have significant deficiencies so there is an urgent need for new and improved drugs. In the human host, Leishmania are obligate intracellular parasites which poses particular challenges in terms of drug discovery. To achieve sufficient throughput and robustness, free-living parasites are often used in primary screening assays as a surrogate for the more complex intracellular assays. We and others have found that such axenic assays have a high false positive rate relative to the intracellular assays, and that this limits their usefulness as a primary platform for screening of large compound collections. While many different reasons could lie behind the poor translation from axenic parasite to intracellular parasite, we show here that a key factor is the identification of growth slowing and cytostatic compounds by axenic assays in addition to the more desirable cytocidal compounds. We present a screening cascade based on a novel cytocidal-only axenic amastigote assay, developed by increasing starting density of cells and lowering the limit of detection, and show that it has a much improved translation to the intracellular assay. We propose that this assay is an improved primary platform in a new Leishmania screening cascade designed for the screening of large compound collections. This cascade was employed to screen a diversity-oriented-synthesis library, and yielded two novel antileishmanial chemotypes. The approach we have taken may have broad relevance to anti-infective and anti-parasitic drug discovery.


Asunto(s)
Antiprotozoarios/farmacología , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento , Leishmania donovani/efectos de los fármacos , Cultivo Axénico , Humanos , Leishmania donovani/crecimiento & desarrollo , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Valor Predictivo de las Pruebas
15.
J Am Chem Soc ; 137(24): 7929-34, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26042473

RESUMEN

Phenotypic cell-based screening is a powerful approach to small-molecule discovery, but a major challenge of this strategy lies in determining the intracellular target and mechanism of action (MoA) for validated hits. Here, we show that the small-molecule BRD0476, a novel suppressor of pancreatic ß-cell apoptosis, inhibits interferon-gamma (IFN-γ)-induced Janus kinase 2 (JAK2) and signal transducer and activation of transcription 1 (STAT1) signaling to promote ß-cell survival. However, unlike common JAK-STAT pathway inhibitors, BRD0476 inhibits JAK-STAT signaling without suppressing the kinase activity of any JAK. Rather, we identified the deubiquitinase ubiquitin-specific peptidase 9X (USP9X) as an intracellular target, using a quantitative proteomic analysis in rat ß cells. RNAi-mediated and CRISPR/Cas9 knockdown mimicked the effects of BRD0476, and reverse chemical genetics using a known inhibitor of USP9X blocked JAK-STAT signaling without suppressing JAK activity. Site-directed mutagenesis of a putative ubiquitination site on JAK2 mitigated BRD0476 activity, suggesting a competition between phosphorylation and ubiquitination to explain small-molecule MoA. These results demonstrate that phenotypic screening, followed by comprehensive MoA efforts, can provide novel mechanistic insights into ostensibly well-understood cell signaling pathways. Furthermore, these results uncover USP9X as a potential target for regulating JAK2 activity in cellular inflammation.


Asunto(s)
Células Secretoras de Insulina/efectos de los fármacos , Interferón gamma/inmunología , Janus Quinasa 2/inmunología , Sustancias Protectoras/química , Sustancias Protectoras/farmacología , Factor de Transcripción STAT1/inmunología , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/inmunología , Fosforilación/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Ubiquitina Tiolesterasa/inmunología , Ubiquitinación/efectos de los fármacos
16.
PLoS One ; 10(3): e0120295, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25811180

RESUMEN

Recent genome wide association studies have linked tribbles pseudokinase 1 (TRIB1) to the risk of coronary artery disease (CAD). Based on the observations that increased expression of TRIB1 reduces secretion of VLDL and is associated with lower plasma levels of LDL cholesterol and triglycerides, higher plasma levels of HDL cholesterol and reduced risk for myocardial infarction, we carried out a high throughput phenotypic screen based on quantitative RT-PCR assay to identify compounds that induce TRIB1 expression in human HepG2 hepatoma cells. In a screen of a collection of diversity-oriented synthesis (DOS)-derived compounds, we identified a series of benzofuran-based compounds that upregulate TRIB1 expression and phenocopy the effects of TRIB1 cDNA overexpression, as they inhibit triglyceride synthesis and apoB secretion in cells. In addition, the compounds downregulate expression of MTTP and APOC3, key components of the lipoprotein assembly pathway. However, CRISPR-Cas9 induced chromosomal disruption of the TRIB1 locus in HepG2 cells, while confirming its regulatory role in lipoprotein metabolism, demonstrated that the effects of benzofurans persist in TRIB1-null cells indicating that TRIB1 is sufficient but not necessary to transmit the effects of the drug. Remarkably, active benzofurans, as well as natural products capable of TRIB1 upregulation, also modulate hepatic cell cholesterol metabolism by elevating the expression of LDLR transcript and LDL receptor protein, while reducing the levels of PCSK9 transcript and secreted PCSK9 protein and stimulating LDL uptake. The effects of benzofurans are not masked by cholesterol depletion and are independent of the SREBP-2 regulatory circuit, indicating that these compounds represent a novel class of chemically tractable small-molecule modulators that shift cellular lipoprotein metabolism in HepG2 cells from lipogenesis to scavenging.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Análisis por Conglomerados , Perfilación de la Expresión Génica , Células Hep G2 , Ensayos Analíticos de Alto Rendimiento , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Lipoproteínas LDL/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oncostatina M/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Bibliotecas de Moléculas Pequeñas
17.
J Infect Dis ; 211(7): 1097-103, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25336726

RESUMEN

BACKGROUND: The emergence and spread of drug resistance to current antimalarial therapies remains a pressing concern, escalating the need for compounds that demonstrate novel modes of action. Diversity-Oriented Synthesis (DOS) libraries bridge the gap between conventional small molecule and natural product libraries, allowing the interrogation of more diverse chemical space in efforts to identify probes of novel parasite pathways. METHODS: We screened and optimized a probe from a DOS library using whole-cell phenotypic assays. Resistance selection and whole-genome sequencing approaches were employed to identify the cellular target of the compounds. RESULTS: We identified a novel macrocyclic inhibitor of Plasmodium falciparum with nanomolar potency and identified the reduction site of cytochrome b as its cellular target. Combination experiments with reduction and oxidation site inhibitors showed synergistic inhibition of the parasite. CONCLUSIONS: The cytochrome b oxidation center is a validated antimalarial target. We show that the reduction site of cytochrome b is also a druggable target. Our results demonstrating a synergistic relationship between oxidation and reduction site inhibitors suggests a future strategy for new combination therapies in the treatment of malaria.


Asunto(s)
Antimaláricos/farmacología , Citocromos b/antagonistas & inhibidores , Descubrimiento de Drogas/métodos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Antimaláricos/síntesis química , Antimaláricos/química , Secuencia de Bases , Dominio Catalítico , Citocromos b/química , Citocromos b/genética , Resistencia a Medicamentos , Sinergismo Farmacológico , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Secuenciación de Nucleótidos de Alto Rendimiento , Ensayos Analíticos de Alto Rendimiento , Humanos , Lactamas Macrocíclicas/síntesis química , Lactamas Macrocíclicas/química , Lactamas Macrocíclicas/farmacología , Malaria Falciparum/parasitología , Datos de Secuencia Molecular , Oxidación-Reducción , Compuestos de Fenilurea/síntesis química , Compuestos de Fenilurea/química , Compuestos de Fenilurea/farmacología , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Bibliotecas de Moléculas Pequeñas , Ubiquinona/metabolismo
18.
Future Med Chem ; 6(17): 1927-42, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25495985

RESUMEN

The development of resistance to existing antimicrobials has created a threat to human health that is not being addressed through our current drug pipeline. Limitations with the use of commercial vendor libraries and natural products have created a need for new types of small molecules to be screened in antimicrobial assays. Diversity oriented synthesis (DOS) is a strategy for the efficient generation of compound collections with a high degree of structural diversity. Diversity-oriented synthesis molecules occupy the middle ground of both complexity and efficiency of synthesis between natural products and commercial libraries. In this review we focus upon the use of diversity-oriented synthesis compound collections for the discovery of new antimicrobial agents.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Enfermedades Transmisibles/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Bacterias Grampositivas/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Orthopoxvirus/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Trypanosoma cruzi/efectos de los fármacos
19.
J Med Chem ; 57(20): 8496-502, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25211597

RESUMEN

Here, we describe medicinal chemistry that was accelerated by a diversity-oriented synthesis (DOS) pathway, and in vivo studies of our previously reported macrocyclic antimalarial agent that derived from the synthetic pathway. Structure-activity relationships that focused on both appendage and skeletal features yielded a nanomolar inhibitor of P. falciparum asexual blood-stage growth with improved solubility and microsomal stability and reduced hERG binding. The build/couple/pair (B/C/P) synthetic strategy, used in the preparation of the original screening library, facilitated medicinal chemistry optimization of the antimalarial lead.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Química Farmacéutica/métodos , Relación Estructura-Actividad , Antimaláricos/metabolismo , Técnicas de Química Sintética , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/metabolismo , Lactamas Macrocíclicas/química , Lactamas Macrocíclicas/farmacología , Plasmodium falciparum/efectos de los fármacos , Solubilidad
20.
Science ; 343(6168): 301-5, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24292625

RESUMEN

Lenalidomide is a drug with clinical efficacy in multiple myeloma and other B cell neoplasms, but its mechanism of action is unknown. Using quantitative proteomics, we found that lenalidomide causes selective ubiquitination and degradation of two lymphoid transcription factors, IKZF1 and IKZF3, by the CRBN-CRL4 ubiquitin ligase. IKZF1 and IKZF3 are essential transcription factors in multiple myeloma. A single amino acid substitution of IKZF3 conferred resistance to lenalidomide-induced degradation and rescued lenalidomide-induced inhibition of cell growth. Similarly, we found that lenalidomide-induced interleukin-2 production in T cells is due to depletion of IKZF1 and IKZF3. These findings reveal a previously unknown mechanism of action for a therapeutic agent: alteration of the activity of an E3 ubiquitin ligase, leading to selective degradation of specific targets.


Asunto(s)
Antineoplásicos/farmacología , Factor de Transcripción Ikaros/metabolismo , Mieloma Múltiple/metabolismo , Talidomida/análogos & derivados , Línea Celular Tumoral , Células HEK293 , Humanos , Factor de Transcripción Ikaros/genética , Interleucina-2/biosíntesis , Lenalidomida , Proteolisis , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Talidomida/farmacología , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA