Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomaterials ; 309: 122578, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38692146

RESUMEN

Biofilm research has grown exponentially over the last decades, arguably due to their contribution to hospital acquired infections when they form on foreign body surfaces such as catheters and implants. Yet, translation of the knowledge acquired in the laboratory to the clinic has been slow and/or often it is not attempted by research teams to walk the talk of what is defined as 'bench to bedside'. We therefore reviewed the biofilm literature to better understand this gap. Our search revealed substantial development with respect to adapting surfaces and media used in models to mimic the clinical settings, however many of the in vitro models were too simplistic, often discounting the composition and properties of the host microenvironment and overlooking the biofilm-implant-host interactions. Failure to capture the physiological growth conditions of biofilms in vivo results in major differences between lab-grown- and clinically-relevant biofilms, particularly with respect to phenotypic profiles, virulence, and antimicrobial resistance, and they essentially impede bench-to-bedside translatability. In this review, we describe the complexity of the biological processes at the biofilm-implant-host interfaces, discuss the prerequisite for the development and characterization of biofilm models that better mimic the clinical scenario, and propose an interdisciplinary outlook of how to bioengineer biofilms in vitro by converging tissue engineering concepts and tools.


Asunto(s)
Bioingeniería , Biopelículas , Prótesis e Implantes , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Humanos , Prótesis e Implantes/microbiología , Bioingeniería/métodos , Animales , Modelos Biológicos , Infecciones Relacionadas con Prótesis/microbiología , Microambiente Celular
2.
ACS Nano ; 16(10): 16497-16512, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36245096

RESUMEN

Biomaterial-associated infections are one of the major causes of implant failure. These infections result from persistent bacteria that have adhered to the biomaterial surface before, during, or after surgery and have formed a biofilm on the implant's surface. It is estimated that 4 to 10% of implant surfaces are contaminated with bacteria; however, the infection rate can be as high as 30% in intensive care units in developed countries and as high as 45% in developing countries. To date, there is no clinical solution to prevent implant infection without relying on the use of high doses of antibiotics supplied systemically and/or removal of the infected device. In this study, melimine, a chimeric cationic peptide that has been tested in Phase I and II human clinical trials, was immobilized onto the surface of 3D-printed medical-grade polycaprolactone (mPCL) scaffolds via covalent binding and adsorption. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra of melimine-treated surfaces confirmed immobilization of the peptide, as well as its homogeneous distribution throughout the scaffold surface. Amino acid analysis showed that melimine covalent and noncovalent immobilization resulted in a peptide density of ∼156 and ∼533 ng/cm2, respectively. Furthermore, we demonstrated that the immobilization of melimine on mPCL scaffolds by 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide hydrochloride (EDC) coupling and noncovalent interactions resulted in a reduction of Staphylococcus aureus colonization by 78.7% and 76.0%, respectively, in comparison with the nonmodified control specimens. Particularly, the modified surfaces maintained their antibacterial properties for 3 days, which resulted in the inhibition of biofilm formation in vitro. This system offers a biomaterial strategy to effectively prevent biofilm-related infections on implant surfaces without relying on the use of prophylactic antibiotic treatment.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Pseudomonas aeruginosa , Humanos , Péptidos Catiónicos Antimicrobianos/química , Biopelículas , Antibacterianos/farmacología , Antibacterianos/química , Materiales Biocompatibles Revestidos/química , Bacterias , Aminoácidos , Carbodiimidas/farmacología , Impresión Tridimensional
3.
Biofabrication ; 14(1)2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34933296

RESUMEN

One of the key challenges in osteochondral tissue engineering is to define specified zones with varying material properties, cell types and biochemical factors supporting locally adjusted differentiation into the osteogenic and chondrogenic lineage, respectively. Herein, extrusion-based core-shell bioprinting is introduced as a potent tool allowing a spatially defined delivery of cell types and differentiation factors TGF-ß3 and BMP-2 in separated compartments of hydrogel strands, and, therefore, a local supply of matching factors for chondrocytes and osteoblasts. Ink development was based on blends of alginate and methylcellulose, in combination with varying concentrations of the nanoclay Laponite whose high affinity binding capacity for various molecules was exploited. Release kinetics of model molecules was successfully tuned by Laponite addition. Core-shell bioprinting was proven to generate well-oriented compartments within one strand as monitored by optical coherence tomography in a non-invasive manner. Chondrocytes and osteoblasts were applied each in the shell while the respective differentiation factors (TGF-ß3, BMP-2) were provided by a Laponite-supported core serving as central factor depot within the strand, allowing directed differentiation of cells in close contact to the core. Experiments with bi-zonal constructs, comprising an osteogenic and a chondrogenic zone, revealed that the local delivery of the factors from the core reduces effects of these factors on the cells in the other scaffold zone. These observations prove the general suitability of the suggested system for co-differentiation of different cell types within a zonal construct.


Asunto(s)
Bioimpresión , Bioimpresión/métodos , Diferenciación Celular , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Factor de Crecimiento Transformador beta3/farmacología
4.
Polymers (Basel) ; 13(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34833259

RESUMEN

The tuneability of hydrogels renders them promising candidates for local drug delivery to prevent and treat local surgical site infection (SSI) while avoiding the systemic side-effects of intravenous antibiotic injections. Here, we present a newly developed gelatin methacryloyl (GelMA)-based hydrogel drug delivery system (GelMA-DDS) to locally deliver the broad-spectrum antibiotic cefazolin for SSI prophylaxis and treatment. Antibiotic doses from 3 µg to 90 µg were loaded in photocrosslinked GelMA hydrogel discs with 5 to 15% w/v polymer concentration and drug encapsulation efficiencies, mechanical properties, crosslinking and release kinetics, as well as bacterial growth inhibition were assessed. Our results demonstrate that all GelMA groups supported excellent drug encapsulation efficiencies of up to 99%. Mechanical properties of the GelMA-DDS were highly tuneable and unaffected by the loading of small to medium doses of cefazolin. The diffusive and the proteolytic in vitro drug delivery of all investigated cefazolin doses was characterized by a burst release, and the delivered cefazolin amount was directly proportional to the encapsulated dose. Accelerated enzymatic degradation of the GelMA-DDS followed zero-order kinetics and was dependent on both the cefazolin dose and GelMA concentration (3-13 h). Finally, we demonstrate that cefazolin delivered from GelMA induced a dose-dependent antibacterial efficacy against S. aureus, in both a broth and a diffusive assay. The cefazolin-loaded GelMA-DDS presented here provides a highly tuneable and easy-to-use local delivery system for the prophylaxis and treatment of SSI.

5.
Front Bioeng Biotechnol ; 9: 638577, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869154

RESUMEN

Infection is the major cause of morbidity after breast implant surgery. Biodegradable medical-grade polycaprolactone (mPCL) scaffolds designed and rooted in evidence-based research offer a promising alternative to overcome the limitations of routinely used silicone implants for breast reconstruction. Nevertheless, as with any implant, biodegradable scaffolds are susceptible to bacterial infection too, especially as bacteria can rapidly colonize the biomaterial surface and form biofilms. Biofilm-related infections are notoriously challenging to treat and can lead to chronic infection and persisting inflammation of surrounding tissue. To date, no clinical solution that allows to efficiently prevent bacterial infection while promoting correct implant integration, has been developed. In this study, we demonstrated for the first time, to our knowledge that the physical immobilization of 1 and 5% human serum albumin (HSA) onto the surface of 3D printed macro- and microporous mPCL scaffolds, resulted in a reduction of Staphylococcus aureus colonization by 71.7 ± 13.6% and 54.3 ± 12.8%, respectively. Notably, when treatment of scaffolds with HSA was followed by tannic acid (TA) crosslinking/stabilization, uniform and stable coatings with improved antibacterial activity were obtained. The HSA/TA-coated scaffolds were shown to be stable when incubated at physiological conditions in cell culture media for 7 days. Moreover, they were capable of inhibiting the growth of S. aureus and Pseudomonas aeruginosa, two most commonly found bacteria in breast implant infections. Most importantly, 1%HSA/10%TA- and 5%HSA/1%TA-coated scaffolds were able to reduce S. aureus colonization on the mPCL surface, by 99.8 ± 0.1% and 98.8 ± 0.6%, respectively, in comparison to the non-coated control specimens. This system offers a new biomaterial strategy to effectively translate the prevention of biofilm-related infections on implant surfaces without relying on the use of prophylactic antibiotic treatment.

6.
ACS Appl Mater Interfaces ; 12(11): 12557-12572, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32092249

RESUMEN

Extrusion-based bioprinting, also known as 3D bioplotting, is a powerful tool for the fabrication of tissue equivalents with spatially defined cell distribution. Even though considerable progress has been made in recent years, there is still a lack of bioinks which enable a tissue-like cell response and are plottable at the same time with good shape fidelity. Herein, we report on the development of a bioink which includes fresh frozen plasma from full human blood and thus a donor/patient-specific protein mixture. By blending of the plasma with 3 w/v% alginate and 9 w/v% methylcellulose, a pasty bioink (plasma-alg-mc) was achieved, which could be plotted with high accuracy and furthermore allowed bioplotted mesenchymal stromal cells (MSC) and primary osteoprogenitor cells to spread within the bioink. In a second step, the novel plasma-based bioink was combined with a plottable self-setting calcium phosphate cement (CPC) to fabricate bone-like tissue constructs. The CPC/plasma-alg-mc biphasic constructs revealed open porosity over the entire time of cell culture (35 d), which is crucial for bone tissue engineered grafts. The biphasic structures could be plotted in volumetric and clinically relevant dimensions and complex shapes could be also generated, as demonstrated for a scaphoid bone model. The plasma bioink potentiated that bioplotted MSC were not harmed by the setting process of the CPC. Latest after 7 days, MSC migrated from the hydrogel to the CPC surface, where they proliferated to 20-fold of the initial cell number covering the entire plotted constructs with a dense cell layer. For bioplotted and osteogenically stimulated osteoprogenitor cells, a significantly increased alkaline phosphatase activity was observed in CPC/plasma-alg-mc constructs in comparison to plasma-free controls. In conclusion, the novel plasma-alg-mc bioink is a promising new ink for several forms of bioprinted tissue equivalents and especially gainful for the combination with CPC for enhanced, biofabricated bone-like constructs.


Asunto(s)
Materiales Biocompatibles/farmacología , Bioimpresión/métodos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Plasma/química , Alginatos , Materiales Biocompatibles/química , Huesos/citología , Fosfatos de Calcio , Células Cultivadas , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hidroxiapatitas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Persona de Mediana Edad , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...