Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Brain ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662782

RESUMEN

Neurological monogenic loss-of-function diseases are hereditary disorders resulting from gene mutations that decrease or abolish the normal function of the encoded protein. These conditions pose significant therapeutic challenges, which may be resolved through the development of innovative therapeutic strategies. RNA-based technologies, such as mRNA replacement therapy, have emerged as promising and increasingly viable treatments. Notably, mRNA therapy exhibits significant potential as a mutation-agnostic approach that can address virtually any monogenic loss-of-function disease. Therapeutic mRNA carries the information for a healthy copy of the defective protein, bypassing the problem of targeting specific genetic variants. Moreover, unlike conventional gene therapy, mRNA-based drugs are delivered through a simplified process that requires only transfer to the cytoplasm, thereby reducing the mutagenic risks related to DNA integration. Additionally, mRNA therapy exerts a transient effect on target cells, minimizing the risk of long-term unintended consequences. The remarkable success of mRNA technology for developing COVID-19 vaccines has rekindled interest in mRNA as a cost-effective method for delivering therapeutic proteins. However, further optimization is required to enhance mRNA delivery, particularly to the central nervous system, while minimizing adverse drug reactions and toxicity. In this comprehensive review, we delve into past, present, and ongoing applications of mRNA therapy for neurological monogenic loss-of-function diseases. We also discuss the promises and potential challenges presented by mRNA therapeutics in this rapidly advancing field. Ultimately, we underscore the full potential of mRNA therapy as a game-changing therapeutic approach for neurological disorders.

2.
Br J Radiol ; 97(1157): 947-953, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38574384

RESUMEN

OBJECTIVES: Becker muscular dystrophy (BMD) is a relatively less investigated neuromuscular disease, partially overlapping the phenotype of Duchenne dystrophy (DMD). Physiopathological and anatomical patterns are still not comprehensively known, despite recent effort in the search of early biomarkers. Aim of this study was to selectively compare normal appearing muscles of BMD with healthy controls. METHODS: Among a pool of 40 BMD patients and 20 healthy controls, Sartorius and gracilis muscles were selected on the basis of a blinded clinical quantitative/qualitative evaluation, if classified as normal (0 or 1 on Mercuri scale) and subsequently segmented on diffusion tensor MRI scans with a tractographic approach. Diffusion derived parameters were extracted. RESULTS: Non-parametric testing revealed significant differences between normal and normal appearing BMD derived parameters in both muscles, the difference being more evident in sartorius. Bonferroni-corrected P-values (<.05) of Mann-Whitney test could discriminate between BMD and controls for standard deviation of all diffusion parameters (mean diffusivity, fractional anisotropy, axial and radial diffusivity) in both sartorius and gracilis, while in sartorius the significant difference was found also in the average values of the same parameters (with exception of RD). CONCLUSIONS: This method could identify microstructural alterations in BMD normal appearing sartorius and gracilis. ADVANCES IN KNOWLEDGE: Diffusion based MRI could be able to identify possible early or subclinical microstructural alterations in dystrophic patients with BMD.


Asunto(s)
Imagen de Difusión Tensora , Músculo Esquelético , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/diagnóstico por imagen , Distrofia Muscular de Duchenne/complicaciones , Imagen de Difusión Tensora/métodos , Masculino , Adulto , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Adulto Joven , Adolescente , Estudios de Casos y Controles , Femenino , Niño , Músculo Grácil/diagnóstico por imagen
3.
Lancet Neurol ; 23(4): 393-403, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508835

RESUMEN

BACKGROUND: Duchenne muscular dystrophy, the most common childhood muscular dystrophy, is caused by dystrophin deficiency. Preclinical and phase 2 study data have suggested that givinostat, a histone deacetylase inhibitor, might help to counteract the effects of this deficiency. We aimed to evaluate the safety and efficacy of givinostat in the treatment of Duchenne muscular dystrophy. METHODS: This multicentre, randomised, double-blind, placebo-controlled, phase 3 trial was done at 41 tertiary care sites in 11 countries. Eligible participants were ambulant, male, and aged at least 6 years, had a genetically confirmed diagnosis of Duchenne muscular dystrophy, completed two four-stair climb assessments with a mean of 8 s or less (≤1 s variance), had a time-to-rise of at least 3 s but less than 10 s, and had received systemic corticosteroids for at least 6 months. Participating boys were randomly assigned (2:1, allocated according to a list generated by the interactive response technology provider) to receive either oral givinostat or matching placebo twice a day for 72 weeks, stratified by concomitant steroid use. Boys, investigators, and site and sponsor staff were masked to treatment assignment. The dose was flexible, based on weight, and was reduced if not tolerated. Boys were divided into two groups on the basis of their baseline vastus lateralis fat fraction (VLFF; measured by magnetic resonance spectroscopy): group A comprised boys with a VLFF of more than 5% but no more than 30%, whereas group B comprised boys with a VLFF of 5% or less, or more than 30%. The primary endpoint compared the effects of givinostat and placebo on the change in results of the four-stair climb assessment between baseline and 72 weeks, in the intention-to-treat, group A population. Safety was assessed in all randomly assigned boys who received at least one dose of study drug. When the first 50 boys in group A completed 12 months of treatment, an interim futility assessment was conducted, after which the sample size was adapted using masked data from the four-stair climb assessments. Furthermore, the starting dose of givinostat was reduced following a protocol amendment. This trial is registered with ClinicalTrials.gov, NCT02851797, and is complete. FINDINGS: Between June 6, 2017, and Feb 22, 2022, 359 boys were assessed for eligibility. Of these, 179 were enrolled into the study (median age 9·8 years [IQR 8·1-11·0]), all of whom were randomly assigned (118 to receive givinostat and 61 to receive placebo); 170 (95%) boys completed the study. Of the 179 boys enrolled, 120 (67%) were in group A (81 givinostat and 39 placebo); of these, 114 (95%) completed the study. For participants in group A, comparing the results of the four-stair climb assessment at 72 weeks and baseline, the geometric least squares mean ratio was 1·27 (95% CI 1·17-1·37) for boys receiving givinostat and 1·48 (1·32-1·66) for those receiving placebo (ratio 0·86, 95% CI 0·745-0·989; p=0·035). The most common adverse events in the givinostat group were diarrhoea (43 [36%] of 118 boys vs 11 [18%] of 61 receiving placebo) and vomiting (34 [29%] vs 8 [13%]); no treatment-related deaths occurred. INTERPRETATION: Among ambulant boys with Duchenne muscular dystrophy, results of the four-stair climb assessment worsened in both groups over the study period; however, the decline was significantly smaller with givinostat than with placebo. The dose of givinostat was reduced after an interim safety analysis, but no new safety signals were reported. An ongoing extension study is evaluating the long-term safety and efficacy of givinostat in patients with Duchenne muscular dystrophy. FUNDING: Italfarmaco.


Asunto(s)
Distrofia Muscular de Duchenne , Humanos , Masculino , Niño , Femenino , Distrofia Muscular de Duchenne/tratamiento farmacológico , Resultado del Tratamiento , Carbamatos/efectos adversos , Corticoesteroides/uso terapéutico , Método Doble Ciego
4.
Diseases ; 11(4)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37987277

RESUMEN

POEMS syndrome-characterized by polyneuropathy, organomegaly, endocrinopathy, M-protein, and skin changes-is an uncommon and complex paraneoplastic disorder encompassing a diverse array of symptoms. Here we report the challenging case of a 34-year-old female who sought medical attention at the emergency department due to distal lower limb weakness. She was breastfeeding her first child at that time. Her condition rapidly deteriorated, making it difficult for her to perform simple tasks independently. Initially, she struggled with activities like jumping or climbing stairs. Eventually, her ability to walk was also compromised. These symptoms underscored the swift evolution of her polyneuropathy. Nerve conduction studies and electromyography confirmed a diagnosis of mixed demyelinating and axonal polyneuropathy. Subsequent investigations, including bone marrow biopsy and immunochemistry testing, revealed a plasma cell disorder characterized by lambda monoclonal gammopathy, along with elevated levels of vascular endothelial growth factor (VEGF > 8000 pg/mL). This pivotal finding led to the diagnosis of POEMS syndrome, prompting the initiation of antineoplastic therapy (daratumumab-lenalidomide-dexamethasone) to manage this condition. An autologous cell transplantation was planned. The rarity of POEMS syndrome and its diverse clinical manifestations often lead to an incorrect or delayed diagnosis. Our case underscores the importance of considering this syndrome in patients presenting with acute or subacute polyneuropathy, even if the patients are young. In conclusion, this case elucidates the diagnostic complexities of POEMS syndrome, emphasizing the integral role of comprehensive multidisciplinary evaluations and the potential influence of increased VEGF as a diagnostic key element and possible therapeutic target.

5.
Ann Neurol ; 94(6): 1126-1135, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37695206

RESUMEN

OBJECTIVE: The aim of this study was to provide an overview of the clinical phenotypes associated with 4 SMN2 copies. METHODS: Clinical phenotypes were analyzed in all the patients with 4 SMN2 copies as part of a nationwide effort including all the Italian pediatric and adult reference centers for spinal muscular atrophy (SMA). RESULTS: The cohort includes 169 patients (102 men and 67 women) with confirmed 4 SMN2 copies (mean age at last follow-up = 36.9 ± 19 years). Six of the 169 patients were presymptomatic, 8 were classified as type II, 145 as type III (38 type IIIA and 107 type IIIB), and 8 as type IV. The remaining 2 patients were asymptomatic adults identified because of a familial case. The cross-sectional functional data showed a reduction of scores with increasing age. Over 35% of the type III and 25% of the type IV lost ambulation (mean age = 26.8 years ± 16.3 SD). The risk of loss of ambulation was significantly associated with SMA type (p < 0.0001), with patients with IIIB and IV less likely to lose ambulation compared to type IIIA. There was an overall gender effect with a smaller number of women and a lower risk for women to lose ambulation. This was significant in the adult (p = 0.009) but not in the pediatric cohort (p = 0.43). INTERPRETATION: Our results expand the existing literature on natural history of 4 SMN2 copies confirming the variability of phenotypes in untreated patients, ranging from type II to type IV and an overall reduction of functional scores with increasing age. ANN NEUROL 2023;94:1126-1135.


Asunto(s)
Atrofia Muscular Espinal , Masculino , Adulto , Niño , Humanos , Femenino , Adolescente , Adulto Joven , Persona de Mediana Edad , Estudios Transversales , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Fenotipo , Caminata , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética
6.
Genes (Basel) ; 14(7)2023 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-37510298

RESUMEN

Introduction/Aims HyperCKemia is considered a hallmark of neuromuscular diseases. It can be either isolated or associated with cramps, myalgia, weakness, myoglobinuria, or rhabdomyolysis, suggesting a metabolic myopathy. The aim of this work was to investigate possible genetic causes in order to help diagnose patients with recurrent hyperCKemia or clinical suspicion of inherited metabolic myopathy. Methods A cohort of 139 patients (90 adults and 49 children) was analyzed using a custom panel containing 54 genes associated with hyperCKemia. Results A definite genetic diagnosis was obtained in 15.1% of cases, while candidate variants or variants of uncertain significance were found in a further 39.5%. Similar percentages were obtained in patients with infantile or adult onset, with some different causative genes. RYR1 was the gene most frequently identified, either with single or compound heterozygous variants, while ETFDH variants were the most common cause for recessive cases. In one patient, mRNA analysis allowed identifying a large LPIN1 deletion missed by DNA sequencing, leading to a certain diagnosis. Conclusion These data confirm the high genetic heterogeneity of hyperCKemia and metabolic myopathies. The reduced diagnostic yield suggests the existence of additional genes associated with this condition but also allows speculation that a significant number of cases presenting with hyperCKemia or muscle symptoms are due to extrinsic, not genetic, factors.


Asunto(s)
Enfermedades Musculares , Enfermedades Neuromusculares , Rabdomiólisis , Adulto , Niño , Humanos , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Enfermedades Neuromusculares/genética , Mialgia/complicaciones , Mialgia/genética , Rabdomiólisis/genética , Rabdomiólisis/complicaciones , Músculos , Fosfatidato Fosfatasa
7.
Orphanet J Rare Dis ; 18(1): 152, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37331934

RESUMEN

BACKGROUND: Allgrove disease is a rare genetic syndrome characterized by adrenal insufficiency, alacrimia, achalasia and complex neurological involvement. Allgrove disease is due to recessive mutations in the AAAS gene, which encodes for the nucleoporin Aladin, implicated in the nucleocytoplasmic transport. The adrenal insufficiency has been suggested to rely on adrenal gland-ACTH resistance. However, the link between the molecular pathology affecting the nucleoporin Aladin and the glucocorticoid deficiency is still unknown. RESULTS: By analyzing postmortem patient's adrenal gland, we identified a downregulation of Aladin transcript and protein. We found a downregulation of Scavenger receptor class B-1 (SCARB1), a key component of the steroidogenic pathway, and SCARB1 regulatory miRNAs (mir125a, mir455) in patient's tissues. With the hypothesis of an impairment in the nucleocytoplasmic transport of the SCARB1 transcription enhancer cyclic AMP-dependent protein kinase (PKA), we detected a reduction of nuclear Phospho-PKA and a cytoplasmic mislocalization in patient's samples. CONCLUSIONS: These results shed a light on the possible mechanisms linking ACTH resistance, SCARB1 impairment, and defective nucleocytoplasmic transport.


Asunto(s)
Insuficiencia Suprarrenal , Acalasia del Esófago , MicroARNs , Humanos , Acalasia del Esófago/genética , Acalasia del Esófago/metabolismo , Acalasia del Esófago/patología , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Regulación hacia Abajo/genética , Proteínas del Tejido Nervioso/genética , Insuficiencia Suprarrenal/genética , Insuficiencia Suprarrenal/metabolismo , Insuficiencia Suprarrenal/patología , Proteínas Nucleares/genética , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo
8.
Clin Park Relat Disord ; 9: 100205, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388713

RESUMEN

We describe a case of severe adult-onset progressive tremulous cerebellar ataxia with pyramidal signs associated with a rare homozygous truncating pathogenic variant in the SYNE1 gene (p.Arg5371*). This contrasts the initial views on SYNE1-related ataxia as a relatively benign, slowly progressive condition, with important implications for clinic-genetic counselling.

9.
Biomedicines ; 11(5)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37238925

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disease resulting from mutations or deletions in SMN1 that lead to progressive death of alpha motor neurons, ultimately leading to severe muscle weakness and atrophy, as well as premature death in the absence of treatment. Recent approval of SMN-increasing medications as SMA therapy has altered the natural course of the disease. Thus, accurate biomarkers are needed to predict SMA severity, prognosis, drug response, and overall treatment efficacy. This article reviews novel non-targeted omics strategies that could become useful clinical tools for patients with SMA. Proteomics and metabolomics can provide insights into molecular events underlying disease progression and treatment response. High-throughput omics data have shown that untreated SMA patients have different profiles than controls. In addition, patients who clinically improved after treatment have a different profile than those who did not. These results provide a glimpse on potential markers that could assist in identifying therapy responders, in tracing the course of the disease, and in predicting its outcome. These studies have been restricted by the limited number of patients, but the approaches are feasible and can unravel severity-specific neuro-proteomic and metabolic SMA signatures.

10.
Neurol Genet ; 9(2): e200058, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37090936

RESUMEN

Background and Objectives: Coenzyme Q10 (CoQ10)-deficient cerebellar ataxia can be due to pathogenic variants in genes encoding for CoQ10 biosynthetic proteins or associated with defects in protein unrelated to its biosynthesis. Diagnosis is crucial because patients may respond favorably to CoQ10 supplementation. The aim of this study was to identify through whole-exome sequencing (WES) the pathogenic variants, and assess CoQ10 levels, in fibroblasts from patients with undiagnosed cerebellar ataxia referred to investigate CoQ10 deficiency. Methods: WES was performed on genomic DNA extracted from 16 patients. Sequencing data were filtered using a virtual panel of genes associated with CoQ10 deficiency and/or cerebellar ataxia. CoQ10 levels were measured by high-performance liquid chromatography in 14 patient-derived fibroblasts. Results: A definite genetic etiology was identified in 8 samples of 16 (diagnostic yield = 50%). The identified genetic causes were pathogenic variants of the genes COQ8A (ADCK3) (n = 3 samples), ATP1A3 (n = 2), PLA2G6 (n = 1), SPG7 (n = 1), and MFSD8 (n = 1). Five novel mutations were found (COQ8A n = 3, PLA2G6 n = 1, and MFSD8 n = 1). CoQ10 levels were significantly decreased in 3/14 fibroblast samples (21.4%), 1 carrying compound heterozygous COQ8A pathogenic variants, 1 harboring a homozygous pathogenic SPG7 variant, and 1 with an unknown molecular defect. Discussion: This work confirms the importance of COQ8A gene mutations as a frequent genetic cause of cerebellar ataxia and CoQ10 deficiency and suggests SPG7 mutations as a novel cause of secondary CoQ10 deficiency.

11.
Front Neurol ; 14: 1095121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793492

RESUMEN

Objective: No treatments are approved for Becker muscular dystrophy (BMD). This study investigated the efficacy and safety of givinostat, a histone deacetylase pan-inhibitor, in adults with BMD. Methods: Males aged 18-65 years with a diagnosis of BMD confirmed by genetic testing were randomized 2:1 to 12 months treatment with givinostat or placebo. The primary objective was to demonstrate statistical superiority of givinostat over placebo for mean change from baseline in total fibrosis after 12 months. Secondary efficacy endpoints included other histological parameters, magnetic resonance imaging and spectroscopy (MRI and MRS) measures, and functional evaluations. Results: Of 51 patients enrolled, 44 completed treatment. At baseline, there was greater disease involvement in the placebo group than givinostat, based on total fibrosis (mean 30.8 vs. 22.8%) and functional endpoints. Mean total fibrosis did not change from baseline in either group, and the two groups did not differ at Month 12 (least squares mean [LSM] difference 1.04%; p = 0.8282). Secondary histology parameters, MRS, and functional evaluations were consistent with the primary. MRI fat fraction in whole thigh and quadriceps did not change from baseline in the givinostat group, but values increased with placebo, with LSM givinostat-placebo differences at Month 12 of -1.35% (p = 0.0149) and -1.96% (p = 0.0022), respectively. Adverse events, most mild or moderate, were reported by 88.2% and 52.9% patients receiving givinostat and placebo. Conclusion: The study failed to achieve the primary endpoint. However, there was a potential signal from the MRI assessments suggesting givinostat could prevent (or slow down) BMD disease progression.

12.
Eur J Neurol ; 30(5): 1312-1319, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36746650

RESUMEN

BACKGROUND AND PURPOSE: The best reperfusion treatment for patients with mild acute ischaemic stroke harbouring proximal anterior circulation large vessel occlusion (LVO) is unknown. The aim was to compare the safety and efficacy of intravenous thrombolysis (IVT) plus endovascular thrombectomy (EVT) versus IVT alone in LVO patients with mild symptoms. METHODS: From the Safe Implementation of Treatment in Stroke-International Stroke Thrombolysis and Thrombectomy Register (SITS-ISTR), were included: (i) consecutive acute ischaemic stroke patients, (ii) treated within 4.5 h from symptoms onset, (iii) baseline National Institutes of Health Stroke Scale (NIHSS) score ≤5 and (iv) intracranial internal carotid artery [ICA], M1 or T occlusion [defined as occlusion of ICA terminal bifurcation]. After propensity score matching, 3-month functional outcomes (modified Rankin Scale [mRS] 0-1 and 0-2) and safety outcomes (symptomatic intracerebral haemorrhage and death) were compared (via univariable and multivariable logistic [and ordinal] regression analyses) in patients treated with IVT + EVT versus IVT alone. RESULTS: In all, 1037 patients were included. After propensity score matching (n = 312 per group), IVT + EVT was independently associated with poor functional outcomes (adjusted odds ratio [aOR] 0.46 for mRS 0-1, 95% confidence interval [CI] 0.30-0.72, p = 0.001; aOR 0.52 for mRS 0-2, 95% CI 0.32-0.84, p = 0.007; aOR 1.61 for 1-point shift in mRS score, 95% CI 1.12-2.32, p = 0.011), with no significant differences in safety outcomes compared to IVT alone, despite numerically higher rates of symptomatic intracerebral haemorrhage (3.3% vs. 1.1%; p = 0.082), a higher rate of any haemorrhagic transformation (17.6% vs. 7.3%; p < 0.001) and subarachnoid haemorrhage (7.9% vs. 1.5%; p = 0.002) in the IVT + EVT group. DISCUSSION: In anterior circulation LVO patients presenting with NIHSS score ≤5, IVT + EVT (vs. IVT alone) was associated with poorer 3-month functional outcome. Randomized controlled trials are needed to elucidate the best treatments in mild LVO patients.


Asunto(s)
Isquemia Encefálica , Procedimientos Endovasculares , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Terapia Trombolítica/efectos adversos , Puntaje de Propensión , Resultado del Tratamiento , Procedimientos Endovasculares/efectos adversos , Trombectomía/efectos adversos , Accidente Cerebrovascular Isquémico/etiología , Hemorragia Cerebral/etiología , Fibrinolíticos
14.
Mol Neurodegener ; 17(1): 52, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35978378

RESUMEN

BACKGROUND: Genetic mutations in beta-glucocerebrosidase (GBA) represent the major genetic risk factor for Parkinson's disease (PD). GBA participates in both the endo-lysosomal pathway and the immune response, two important mechanisms involved in the pathogenesis of PD. However, modifiers of GBA penetrance have not yet been fully elucidated. METHODS: We characterized the transcriptomic profiles of circulating monocytes in a population of patients with PD and healthy controls (CTRL) with and without GBA variants (n = 23 PD/GBA, 13 CTRL/GBA, 56 PD, 66 CTRL) and whole blood (n = 616 PD, 362 CTRL, 127 PD/GBA, 165 CTRL/GBA). Differential expression analysis, pathway enrichment analysis, and outlier detection were performed. Ultrastructural characterization of isolated CD14+ monocytes in the four groups was also performed through electron microscopy. RESULTS: We observed hundreds of differentially expressed genes and dysregulated pathways when comparing manifesting and non-manifesting GBA mutation carriers. Specifically, when compared to idiopathic PD, PD/GBA showed dysregulation in genes involved in alpha-synuclein degradation, aging and amyloid processing. Gene-based outlier analysis confirmed the involvement of lysosomal, membrane trafficking, and mitochondrial processing in manifesting compared to non-manifesting GBA-carriers, as also observed at the ultrastructural levels. Transcriptomic results were only partially replicated in an independent cohort of whole blood samples, suggesting cell-type specific changes. CONCLUSIONS: Overall, our transcriptomic analysis of primary monocytes identified gene targets and biological processes that can help in understanding the pathogenic mechanisms associated with GBA mutations in the context of PD.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Heterocigoto , Humanos , Monocitos/metabolismo , Mutación/genética , Enfermedad de Parkinson/metabolismo , Transcriptoma
15.
Biomedicines ; 10(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35884997

RESUMEN

Cerebrovascular diseases are a leading cause of death and disability globally. The development of new therapeutic targets for cerebrovascular diseases (e.g., ischemic, and hemorrhagic stroke, vascular dementia) is limited by a lack of knowledge of the cellular and molecular biology of health and disease conditions and the factors that cause injury to cerebrovascular structures. Here, we describe the role of advances in omics technology, particularly RNA sequencing, in studying high-dimensional, multifaceted profiles of thousands of individual blood and vessel cells at single-cell resolution. This analysis enables the dissection of the heterogeneity of diseased cerebral vessels and their atherosclerotic plaques, including the microenvironment, cell evolutionary trajectory, and immune response pathway. In animal models, RNA sequencing permits the tracking of individual cells (including immunological, endothelial, and vascular smooth muscle cells) that compose atherosclerotic plaques and their alteration under experimental settings such as phenotypic transition. We describe how single-cell RNA transcriptomics in humans allows mapping to the molecular and cellular levels of atherosclerotic plaques in cerebral arteries, tracking individual lymphocytes and macrophages, and how these data can aid in identifying novel immune mechanisms that could be exploited as therapeutic targets for cerebrovascular diseases. Single-cell multi-omics approaches will likely provide the unprecedented resolution and depth of data needed to generate clinically relevant cellular and molecular signatures for the precise treatment of cerebrovascular diseases.

16.
PLoS One ; 17(7): e0271681, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35905042

RESUMEN

The aim of this study was to establish the possible effect of age, corticosteroid treatment and brain dystrophin involvement on motor function in young boys affected by Duchenne Muscular Dystrophy who were assessed using the North Star Ambulatory Assessment between the age of 4 and 7 years. The study includes 951 North Star assessments from 226 patients. Patients were subdivided according to age, to the site of mutation and therefore to the involvement of different brain dystrophin isoforms and to corticosteroids duration. There was a difference in the maximum North Star score achieved among patients with different brain dystrophin isoforms (p = 0.007). Patients with the involvement of Dp427, Dp140 and Dp71, had lower maximum NSAA scores when compared to those with involvement of Dp427 and Dp140 or of Dp427 only. The difference in the age when the maximum score was achieved in the different subgroups did not reach statistical significance. Using a linear regression model on all assessments we found that each of the three variables, age, site of mutation and corticosteroid treatment had an influence on the NSAA values and their progression over time. A second analysis, looking at 12-month changes showed that within this time interval the magnitude of changes was related to corticosteroid treatment but not to site of mutation. Our findings suggest that each of the considered variables appear to play a role in the progression of North Star scores in patients between the age of 4 and 7 years and that these should be carefully considered in the trial design of boys in this age range.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Corticoesteroides/uso terapéutico , Niño , Preescolar , Distrofina/genética , Humanos , Masculino , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Mutación , Isoformas de Proteínas/genética
17.
Front Neurol ; 13: 912820, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35785342

RESUMEN

Multiple System Atrophy (MSA) is a rare neurodegenerative disease, clinically defined by a combination of autonomic dysfunction and motor involvement, that may be predominantly extrapyramidal (MSA-P) or cerebellar (MSA-C). Although dementia is generally considered a red flag against the clinical diagnosis of MSA, in the last decade the evidence of cognitive impairment in MSA patients has been growing. Cognitive dysfunction appears to involve mainly, but not exclusively, executive functions, and may have different characteristics and progression in the two subtypes of the disease (i.e., MSA-P and MSA-C). Despite continued efforts, combining in-vivo imaging studies as well as pathological studies, the physiopathological bases of cognitive involvement in MSA are still unclear. In this view, the possible link between cardiovascular autonomic impairment and decreased cognitive performance, extensively investigated in PD, needs to be clarified as well. In the present study, we evaluated a cohort of 20 MSA patients (9 MSA-P, 11 MSA-C) by means of a neuropsychological battery, hemodynamic assessment (heart rate and arterial blood pressure) during rest and active standing and bedside autonomic function tests assessed by heart rate variability (HRV) parameters and sympathetic skin response (SSR) in the same experimental session. Overall, global cognitive functioning, as indicated by the MoCA score, was preserved in most patients. However, short- and long-term memory and attentional and frontal-executive functions were moderately impaired. When comparing MSA-P and MSA-C, the latter obtained lower scores in tests of executive functions and verbal memory. Conversely, no statistically significant difference in cardiovascular autonomic parameters was identified between MSA-P and MSA-C patients. In conclusion, moderate cognitive deficits, involving executive functions and memory, are present in MSA, particularly in MSA-C patients. In addition, our findings do not support the role of dysautonomia as a major driver of cognitive differences between MSA-P and MSA-C.

18.
Mol Genet Metab Rep ; 32: 100887, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35756861

RESUMEN

Mitochondrial DNA (mtDNA) depletion syndromes are disorders characterized by infantile-onset, severe progression, and the drastic loss of mtDNA content in affected tissues. In a patient who showed severe hypotonia, proximal tubulopathy and sensorineural hearing loss after birth, we observed severe mtDNA depletion and impaired respiratory chain activity in muscle due to heterozygous variants c.686G > T and c.551-2A > G in RRM2B, encoding the p53R2 subunit of the ribonucleotide reductase.

19.
Front Neurol ; 13: 880068, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35645984

RESUMEN

Background: Hepatic encephalopathy is characterized by psychiatric and neurological abnormalities, including epileptic seizure and non-convulsive and convulsive status epilepticus. Conventional brain magnetic resonance imaging is useful in supporting diagnosis since it can reveal specific radiological findings. In the literature, there is no description of hepatic encephalopathy onset as non-convulsive status epilepticus; we provide the first report. Case Summary: We report a case of a 67-year-old woman, without history of cirrhosis, presenting altered mental state, normal brain computed tomography imaging, and electroencephalography suggestive of epileptic activity. We suspected non-convulsive status epilepticus, and we administered diazepam and levetiracetam with clinical improvement. Thus, we made a diagnosis of non-convulsive status epilepticus. A radiological study with brain magnetic resonance imaging showed bilateral hyperintensity on T1-weighted sequences of globus pallidus and hyperintensity of both corticospinal tracts on T2-weighted fluid-attenuated inversion recovery sequences. Blood tests revealed hyperammonemia, mild abnormality of liver function indices, and chronic Hepatitis B and D virus coinfection. Hepatic elastosonography suggested liver cirrhosis. The patient started antiviral therapy with entecavir and prevention of hepatic encephalopathy with rifaximin and lactulose; she was discharged with a normal mental state. Conclusions: Hepatic encephalopathy can present as an initial manifestation with non-convulsive status epilepticus. Electroencephalography is useful for differentiating non-convulsive status epilepticus from an episode of hepatic encephalopathy, and neuroimaging aids the diagnostic process.

20.
J Neurol ; 269(9): 4884-4894, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35513612

RESUMEN

Genetic modifiers of Duchenne muscular dystrophy (DMD) are variants located in genes different from the disease-causing gene DMD, but associated with differences in disease onset, progression, or response to treatment. Modifiers described so far have been tested mainly for associations with ambulatory function, while their effect on upper limb function, which is especially relevant for quality of life and independence in non-ambulatory patients, is unknown. We tested genotypes at several known modifier loci (SPP1, LTBP4, CD40, ACTN3) for association with Performance Upper Limb version 1.2 score in an Italian multicenter cohort, and with Brooke scale score in the Cooperative International Neuromuscular Group Duchenne Natural History Study (CINRG-DNHS), using generalized estimating equation (GEE) models of longitudinally collected data, with age and glucocorticoid treatment as covariates. CD40 rs1883832, previously linked to earlier loss of ambulation, emerged as a modifier of upper limb function, negatively affecting shoulder and distal domains of PUL (p = 0.023 and 0.018, respectively) in the Italian cohort, as well as of Brooke score (p = 0.018) in the CINRG-DNHS. These findings will be useful for the design and interpretation of clinical trials in DMD, especially for non-ambulatory populations.


Asunto(s)
Distrofia Muscular de Duchenne , Actinina/genética , Estudios de Cohortes , Genotipo , Humanos , Distrofia Muscular de Duchenne/genética , Calidad de Vida , Extremidad Superior
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...