Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cardiovasc Diabetol ; 20(1): 27, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514365

RESUMEN

BACKGROUND: We sought to evaluate the association of metabolic syndrome (MetS) and computed tomography (CT)-derived cardiometabolic biomarkers (non-alcoholic fatty liver disease [NAFLD] and epicardial adipose tissue [EAT] measures) with long-term risk of major adverse cardiovascular events (MACE) in asymptomatic individuals. METHODS: This was a post-hoc analysis of the prospective EISNER (Early-Identification of Subclinical Atherosclerosis by Noninvasive Imaging Research) study of participants who underwent baseline coronary artery calcium (CAC) scoring CT and 14-year follow-up for MACE (myocardial infarction, late revascularization, or cardiac death). EAT volume (cm3) and attenuation (Hounsfield units [HU]) were quantified from CT using fully automated deep learning software (< 30 s per case). NAFLD was defined as liver-to-spleen attenuation ratio < 1.0 and/or average liver attenuation < 40 HU. RESULTS: In the final population of 2068 participants (59% males, 56 ± 9 years), those with MetS (n = 280;13.5%) had a greater prevalence of NAFLD (26.0% vs. 9.9%), higher EAT volume (114.1 cm3 vs. 73.7 cm3), and lower EAT attenuation (-76.9 HU vs. -73.4 HU; all p < 0.001) compared to those without MetS. At 14 ± 3 years, MACE occurred in 223 (10.8%) participants. In multivariable Cox regression, MetS was associated with increased risk of MACE (HR 1.58 [95% CI 1.10-2.27], p = 0.01) independently of CAC score; however, not after adjustment for EAT measures (p = 0.27). In a separate Cox analysis, NAFLD predicted MACE (HR 1.78 [95% CI 1.21-2.61], p = 0.003) independently of MetS, CAC score, and EAT measures. Addition of EAT volume to current risk assessment tools resulted in significant net reclassification improvement for MACE (22% over ASCVD risk score; 17% over ASCVD risk score plus CAC score). CONCLUSIONS: MetS, NAFLD, and artificial intelligence-based EAT measures predict long-term MACE risk in asymptomatic individuals. Imaging biomarkers of cardiometabolic disease have the potential for integration into routine reporting of CAC scoring CT to enhance cardiovascular risk stratification. Trial registration NCT00927693.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Aprendizaje Profundo , Cardiopatías/epidemiología , Síndrome Metabólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador , Tomografía Computarizada por Rayos X , Tejido Adiposo/fisiopatología , Adiposidad , Anciano , Anciano de 80 o más Años , Factores de Riesgo Cardiometabólico , Femenino , Cardiopatías/diagnóstico por imagen , Humanos , Los Angeles/epidemiología , Masculino , Síndrome Metabólico/epidemiología , Síndrome Metabólico/fisiopatología , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Pericardio , Valor Predictivo de las Pruebas , Prevalencia , Pronóstico , Estudios Prospectivos , Sistema de Registros , Medición de Riesgo , Factores de Tiempo
2.
Eur Heart J Cardiovasc Imaging ; 22(6): 705-714, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-32533137

RESUMEN

AIMS: Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) stress-only protocols reduce radiation exposure and cost but require clinicians to make immediate decisions regarding rest scan cancellation. We developed a machine learning (ML) approach for automatic rest scan cancellation and evaluated its prognostic safety. METHODS AND RESULTS: In total, 20 414 patients from a solid-state SPECT MPI international multicentre registry with clinical data and follow-up for major adverse cardiac events (MACE) were used to train ML for MACE prediction as a continuous probability (ML score), using 10-fold repeated hold-out testing to separate test from training data. Three ML score thresholds (ML1, ML2, and ML3) were derived by matching the cancellation rates achieved by physician interpretation and two clinical selection rules. Annual MACE rates were compared in patients selected for rest scan cancellation between approaches. Patients selected for rest scan cancellation with ML had lower annualized MACE rates than those selected by physician interpretation or clinical selection rules (ML1 vs. physician interpretation: 1.4 ± 0.1% vs. 2.1 ± 0.1%; ML2 vs. clinical selection: 1.5 ± 0.1% vs. 2.0 ± 0.1%; ML3 vs. stringent clinical selection: 0.6 ± 0.1% vs. 1.7 ± 0.1%, all P < 0.0001) at matched cancellation rates (60 ± 0.7, 64 ± 0.7, and 30 ± 0.6%). Annualized all-cause mortality rates in populations recommended for rest cancellation by physician interpretation, clinical selection approaches were higher (1.3%, 1.2%, and 1.0%, respectively) compared with corresponding ML thresholds (0.6%, 0.6%, and 0.2%). CONCLUSION: ML, using clinical and stress imaging data, can be used to automatically recommend cancellation of rest SPECT MPI scans, while ensuring higher prognostic safety than current clinical approaches.


Asunto(s)
Enfermedad de la Arteria Coronaria , Imagen de Perfusión Miocárdica , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Prueba de Esfuerzo , Humanos , Aprendizaje Automático , Pronóstico , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X
3.
Atherosclerosis ; 318: 76-82, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33239189

RESUMEN

BACKGROUND AND AIMS: We sought to assess the performance of a comprehensive machine learning (ML) risk score integrating circulating biomarkers and computed tomography (CT) measures for the long-term prediction of hard cardiac events in asymptomatic subjects. METHODS: We studied 1069 subjects (age 58.2 ± 8.2 years, 54.0% males) from the prospective EISNER trial who underwent coronary artery calcium (CAC) scoring CT, serum biomarker assessment, and long-term follow-up. Epicardial adipose tissue (EAT) was quantified from CT using fully automated deep learning software. Forty-eight serum biomarkers, both established and novel, were assayed. An ML algorithm (XGBoost) was trained using clinical risk factors, CT measures (CAC score, number of coronary lesions, aortic valve calcium score, EAT volume and attenuation), and circulating biomarkers, and validated using repeated 10-fold cross validation. RESULTS: At 14.5 ± 2.0 years, there were 50 hard cardiac events (myocardial infarction or cardiac death). The ML risk score (area under the receiver operator characteristic curve [AUC] 0.81) outperformed the CAC score (0.75) and ASCVD risk score (0.74; both p = 0.02) for the prediction of hard cardiac events. Serum biomarkers provided incremental prognostic value beyond clinical data and CT measures in the ML model (net reclassification index 0.53 [95% CI: 0.23-0.81], p < 0.0001). Among novel biomarkers, MMP-9, pentraxin 3, PIGR, and GDF-15 had highest variable importance for ML and reflect the pathways of inflammation, extracellular matrix remodeling, and fibrosis. CONCLUSIONS: In this prospective study, ML integration of novel circulating biomarkers and noninvasive imaging measures provided superior long-term risk prediction for cardiac events compared to current risk assessment tools.


Asunto(s)
Enfermedad de la Arteria Coronaria , Calcificación Vascular , Anciano , Biomarcadores , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Femenino , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Prospectivos , Medición de Riesgo , Factores de Riesgo
4.
Circ Cardiovasc Imaging ; 13(2): e009829, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32063057

RESUMEN

BACKGROUND: Epicardial adipose tissue (EAT) volume (cm3) and attenuation (Hounsfield units) may predict major adverse cardiovascular events (MACE). We aimed to evaluate the prognostic value of fully automated deep learning-based EAT volume and attenuation measurements quantified from noncontrast cardiac computed tomography. METHODS: Our study included 2068 asymptomatic subjects (56±9 years, 59% male) from the EISNER trial (Early Identification of Subclinical Atherosclerosis by Noninvasive Imaging Research) with long-term follow-up after coronary artery calcium measurement. EAT volume and mean attenuation were quantified using automated deep learning software from noncontrast cardiac computed tomography. MACE was defined as myocardial infarction, late (>180 days) revascularization, and cardiac death. EAT measures were compared to coronary artery calcium score and atherosclerotic cardiovascular disease risk score for MACE prediction. RESULTS: At 14±3 years, 223 subjects suffered MACE. Increased EAT volume and decreased EAT attenuation were both independently associated with MACE. Atherosclerotic cardiovascular disease risk score, coronary artery calcium, and EAT volume were associated with increased risk of MACE (hazard ratio [95%CI]: 1.03 [1.01-1.04]; 1.25 [1.19-1.30]; and 1.35 [1.07-1.68], P<0.01 for all) and EAT attenuation was inversely associated with MACE (hazard ratio, 0.83 [95% CI, 0.72-0.96]; P=0.01), with corresponding Harrell C statistic of 0.76. MACE risk progressively increased with EAT volume ≥113 cm3 and coronary artery calcium ≥100 AU and was highest in subjects with both (P<0.02 for all). In 1317 subjects, EAT volume was correlated with inflammatory biomarkers C-reactive protein, myeloperoxidase, and adiponectin reduction; EAT attenuation was inversely related to these biomarkers. CONCLUSIONS: Fully automated EAT volume and attenuation quantification by deep learning from noncontrast cardiac computed tomography can provide prognostic value for the asymptomatic patient, without additional imaging or physician interaction.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/diagnóstico , Vasos Coronarios/diagnóstico por imagen , Aprendizaje Profundo , Pericardio/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Calcificación Vascular/diagnóstico , Anciano , Anciano de 80 o más Años , Enfermedades Asintomáticas , Angiografía Coronaria/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Medición de Riesgo , Factores de Riesgo
5.
Eur Heart J Cardiovasc Imaging ; 21(5): 549-559, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31317178

RESUMEN

AIMS: To optimize per-vessel prediction of early coronary revascularization (ECR) within 90 days after fast single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) using machine learning (ML) and introduce a method for a patient-specific explanation of ML results in a clinical setting. METHODS AND RESULTS: A total of 1980 patients with suspected coronary artery disease (CAD) underwent stress/rest 99mTc-sestamibi/tetrofosmin MPI with new-generation SPECT scanners were included. All patients had invasive coronary angiography within 6 months after SPECT MPI. ML utilized 18 clinical, 9 stress test, and 28 imaging variables to predict per-vessel and per-patient ECR with 10-fold cross-validation. Area under the receiver operator characteristics curve (AUC) of ML was compared with standard quantitative analysis [total perfusion deficit (TPD)] and expert interpretation. ECR was performed in 958 patients (48%). Per-vessel, the AUC of ECR prediction by ML (AUC 0.79, 95% confidence interval (CI) [0.77, 0.80]) was higher than by regional stress TPD (0.71, [0.70, 0.73]), combined-view stress TPD (AUC 0.71, 95% CI [0.69, 0.72]), or ischaemic TPD (AUC 0.72, 95% CI [0.71, 0.74]), all P < 0.001. Per-patient, the AUC of ECR prediction by ML (AUC 0.81, 95% CI [0.79, 0.83]) was higher than that of stress TPD, combined-view TPD, and ischaemic TPD, all P < 0.001. ML also outperformed nuclear cardiologists' expert interpretation of MPI for the prediction of early revascularization performance. A method to explain ML prediction for an individual patient was also developed. CONCLUSION: In patients with suspected CAD, the prediction of ECR by ML outperformed automatic MPI quantitation by TPDs (per-vessel and per-patient) or nuclear cardiologists' expert interpretation (per-patient).


Asunto(s)
Enfermedad de la Arteria Coronaria , Imagen de Perfusión Miocárdica , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/cirugía , Humanos , Aprendizaje Automático , Perfusión , Sistema de Registros , Tomografía Computarizada de Emisión de Fotón Único
6.
Cardiovasc Res ; 116(14): 2216-2225, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31853543

RESUMEN

AIMS: Our aim was to evaluate the performance of machine learning (ML), integrating clinical parameters with coronary artery calcium (CAC), and automated epicardial adipose tissue (EAT) quantification, for the prediction of long-term risk of myocardial infarction (MI) and cardiac death in asymptomatic subjects. METHODS AND RESULTS: Our study included 1912 asymptomatic subjects [1117 (58.4%) male, age: 55.8 ± 9.1 years] from the prospective EISNER trial with long-term follow-up after CAC scoring. EAT volume and density were quantified using a fully automated deep learning method. ML extreme gradient boosting was trained using clinical co-variates, plasma lipid panel measurements, risk factors, CAC, aortic calcium, and automated EAT measures, and validated using repeated 10-fold cross validation. During mean follow-up of 14.5 ± 2 years, 76 events of MI and/or cardiac death occurred. ML obtained a significantly higher AUC than atherosclerotic cardiovascular disease (ASCVD) risk and CAC score for predicting events (ML: 0.82; ASCVD: 0.77; CAC: 0.77, P < 0.05 for all). Subjects with a higher ML score (by Youden's index) had high hazard of suffering events (HR: 10.38, P < 0.001); the relationships persisted in multivariable analysis including ASCVD-risk and CAC measures (HR: 2.94, P = 0.005). Age, ASCVD-risk, and CAC were prognostically important for both genders. Systolic blood pressure was more important than cholesterol in women, and the opposite in men. CONCLUSIONS: In this prospective study, machine learning used to integrate clinical and quantitative imaging-based variables significantly improves prediction of MI and cardiac death compared with standard clinical risk assessment. Following further validation, such a personalized paradigm could potentially be used to improve cardiovascular risk assessment.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Angiografía por Tomografía Computarizada , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Aprendizaje Automático , Tomografía Computarizada Multidetector , Infarto del Miocardio/etiología , Interpretación de Imagen Radiográfica Asistida por Computador , Calcificación Vascular/diagnóstico por imagen , Anciano , Causas de Muerte , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/mortalidad , Enfermedad de la Arteria Coronaria/fisiopatología , Técnicas de Apoyo para la Decisión , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/mortalidad , Infarto del Miocardio/fisiopatología , Pericardio , Valor Predictivo de las Pruebas , Pronóstico , Estudios Prospectivos , Medición de Riesgo , Factores de Riesgo , Factores Sexuales , Factores de Tiempo , Calcificación Vascular/complicaciones , Calcificación Vascular/mortalidad , Calcificación Vascular/fisiopatología
7.
J Nucl Cardiol ; 27(4): 1180-1189, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31087268

RESUMEN

BACKGROUND: Upper reference limits for transient ischemic dilation (TID) have not been rigorously established for cadmium-zinc-telluride (CZT) camera systems. We aimed to derive TID limits for common myocardial perfusion imaging protocols utilizing a large, multicenter registry (REFINE SPECT). METHODS: One thousand six hundred and seventy-two patients with low likelihood of coronary artery disease with normal perfusion findings were identified. Images were processed with Quantitative Perfusion SPECT software (Cedars-Sinai Medical Center, Los Angeles, CA). Non-attenuation-corrected, camera-, radiotracer-, and stress protocol-specific TID limits in supine position were derived from 97.5th percentile and mean + 2 standard deviations (SD). Reference limits were compared for different solid-state cameras (D-SPECT vs. Discovery), radiotracers (technetium-99m-sestamibi vs. tetrofosmin), different types of stress (exercise vs. four different vasodilator-based protocols), and different vasodilator-based protocols. RESULTS: TID measurements did not follow Gaussian distribution in six out of eight subgroups. TID limits ranged from 1.18 to 1.52 (97.5th percentile) and 1.18 to 1.39 (mean + 2SD). No difference was noted between D-SPECT and Discovery cameras (P = 0.71) while differences between exercise and vasodilator-based protocols (adenosine, regadenoson, or regadenoson-walk) were noted (all P < 0.05). CONCLUSIONS: We used a multicenter registry to establish camera-, radiotracer-, and protocol-specific upper reference limits of TID for supine position on CZT camera systems. Reference limits did not differ between D-SPECT and Discovery camera.


Asunto(s)
Cámaras gamma , Isquemia Miocárdica/diagnóstico por imagen , Imagen de Perfusión Miocárdica/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Adulto , Anciano , Cadmio , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sistema de Registros , Telurio , Zinc
8.
Artículo en Inglés | MEDLINE | ID: mdl-31762536

RESUMEN

BACKGROUND: Coronary computed tomography angiography (CTA) allows quantification of stenosis. However, such quantitative analysis is not part of clinical routine. We evaluated the feasibility of utilizing deep learning for quantifying coronary artery disease from CTA. METHODS: A total of 716 diseased segments in 156 patients (66 ± 10 years) who underwent CTA were analyzed. Minimal luminal area (MLA), percent diameter stenosis (DS), and percent contrast density difference (CDD) were measured using semi-automated software (Autoplaque) by an expert reader. Using the expert annotations, deep learning was performed with convolutional neural networks using 10-fold cross-validation to segment CTA lumen and calcified plaque. MLA, DS and CDD computed using deep-learning-based approach was compared to expert reader measurements. RESULTS: There was excellent correlation between the expert reader and deep learning for all quantitative measures (r=0.984 for MLA; r=0.957 for DS; and r=0.975 for CDD, p<0.001 for all). The expert reader and deep learning method was not significantly different for MLA (median 4.3 mm2 for both, p=0.68) and CDD (11.6 vs 11.1%, p=0.30), and was significantly different for DS (26.0 vs 26.6%, p<0.05); however, the ranges of all the quantitative measures were within inter-observer variability between 2 expert readers. CONCLUSIONS: Our deep learning-based method allows quantitative measurement of coronary artery disease segments accurately from CTA and may enhance clinical reporting.

9.
Eur Heart J Cardiovasc Imaging ; 20(6): 636-643, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30789223

RESUMEN

AIMS: Increased attenuation of pericoronary adipose tissue (PCAT) around the proximal right coronary artery (RCA) from coronary computed tomography angiography (CTA) has been shown to be associated with coronary inflammation and improved prediction of cardiac death over plaque features. Our aim was to investigate whether PCAT CT attenuation is related to progression of coronary plaque burden. METHODS AND RESULTS: We analysed CTA studies of 111 stable patients (age 59.2 ± 9.8 years, 77% male) who underwent sequential CTA (3.4 ± 1.6 years between scans) with identical acquisition protocols. Total plaque (TP), calcified plaque (CP), non-calcified plaque (NCP), and low-density non-calcified plaque (LD-NCP) volumes and corresponding burden (plaque volume × 100%/vessel volume) were quantified using semi-automated software. PCAT CT attenuation (HU) was measured around the proximal RCA, the most standardized method for PCAT analysis. Patients with an increase in NCP burden (n = 51) showed an increase in PCAT attenuation, whereas patients with a decrease in NCP burden (n = 60) showed a decrease {4.4 [95% confidence interval (CI) 2.6-6.2] vs. -2.78 (95% CI -4.6 to -1.0) HU, P < 0.0001}. Changes in PCAT attenuation correlated with changes in the burden of NCP (r = 0.55, P < 0.001) and LD-NCP (r = 0.24, P = 0.01); but not CP burden (P = 0.3). Increased baseline PCAT attenuation ≥-75 HU was independently associated with increase in NCP (odds ratio 3.07, 95% CI 1.4-7.0; P < 0.008) and TP burden on follow-up CTA. CONCLUSION: PCAT attenuation measured from routine CTA is related to the progression of NCP and TP burden. This imaging biomarker may help to identify patients at increased risk of high-risk plaque progression and allow monitoring of beneficial changes from medical therapy.


Asunto(s)
Tejido Adiposo/metabolismo , Angiografía por Tomografía Computarizada/métodos , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Progresión de la Enfermedad , Placa Aterosclerótica/diagnóstico por imagen , Tejido Adiposo/patología , Anciano , Biomarcadores/análisis , Estudios de Cohortes , Intervalos de Confianza , Enfermedad de la Arteria Coronaria/fisiopatología , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Monitoreo Fisiológico/métodos , Oportunidad Relativa , Placa Aterosclerótica/fisiopatología , Pronóstico , Estudios Retrospectivos , Medición de Riesgo , Índice de Severidad de la Enfermedad
10.
Radiol Artif Intell ; 1(6): e190045, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-32090206

RESUMEN

PURPOSE: To evaluate the performance of deep learning for robust and fully automated quantification of epicardial adipose tissue (EAT) from multicenter cardiac CT data. MATERIALS AND METHODS: In this multicenter study, a convolutional neural network approach was trained to quantify EAT on non-contrast material-enhanced calcium-scoring CT scans from multiple cohorts, scanners, and protocols (n = 850). Deep learning performance was compared with the performance of three expert readers and with interobserver variability in a subset of 141 scans. The deep learning algorithm was incorporated into research software. Automated EAT progression was compared with expert measurements for 70 patients with baseline and follow-up scans. RESULTS: Automated quantification was performed in a mean (± standard deviation) time of 1.57 seconds ± 0.49, compared with 15 minutes for experts. Deep learning provided high agreement with expert manual quantification for all scans (R = 0.974; P < .001), with no significant bias (0.53 cm3; P = .13). Manual EAT volumes measured by two experienced readers were highly correlated (R = 0.984; P < .001) but with a bias of 4.35 cm3 (P < .001). Deep learning quantifications were highly correlated with the measurements of both experts (R = 0.973 and R = 0.979; P < .001), with significant bias for reader 1 (5.11 cm3; P < .001) but not for reader 2 (0.88 cm3; P = .26). EAT progression by deep learning correlated strongly with manual EAT progression (R = 0.905; P < .001) in 70 patients, with no significant bias (0.64 cm3; P = .43), and was related to an increased noncalcified plaque burden quantified from coronary CT angiography (5.7% vs 1.8%; P = .026). CONCLUSION: Deep learning allows rapid, robust, and fully automated quantification of EAT from calcium scoring CT. It performs as well as an expert reader and can be implemented for routine cardiovascular risk assessment.© RSNA, 2019See also the commentary by Schoepf and Abadia in this issue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA