Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Commun Biol ; 7(1): 520, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698168

RESUMEN

The sulco-gyral pattern is a qualitative feature of the cortical anatomy that is determined in utero, stable throughout lifespan and linked to brain function. The intraparietal sulcus (IPS) is a nodal associative brain area, but the relation between its morphology and cognition is largely unknown. By labelling the left and right IPS of 390 healthy participants into two patterns, according to the presence or absence of a sulcus interruption, here we demonstrate a strong association between the morphology of the right IPS and performance on memory and language tasks. We interpret the results as a morphological advantage of a sulcus interruption, probably due to the underlying white matter organization. The right-hemisphere specificity of this effect emphasizes the neurodevelopmental and plastic role of sulcus morphology in cognition prior to lateralisation processes. The results highlight a promising area of investigation on the relationship between cognitive performance, sulco-gyral pattern and white matter bundles.


Asunto(s)
Lenguaje , Imagen por Resonancia Magnética , Memoria , Lóbulo Parietal , Humanos , Lóbulo Parietal/fisiología , Lóbulo Parietal/anatomía & histología , Femenino , Masculino , Adulto , Memoria/fisiología , Adulto Joven , Individualidad , Cognición/fisiología , Adolescente , Persona de Mediana Edad , Sustancia Blanca/fisiología , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen
2.
Hippocampus ; 34(4): 204-216, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38214182

RESUMEN

Developmental topographical disorientation (DTD) refers to the lifelong inability to orient by means of cognitive maps in familiar surroundings despite otherwise well-preserved general cognitive functions, and the absence of any acquired brain injury or neurological condition. While reduced functional connectivity between the hippocampus and other brain regions has been reported in DTD individuals, no structural differences in gray matter tissue for the whole brain neither for the hippocampus were detected. Considering that the human hippocampus is the main structure associated with cognitive map-based navigation, here, we investigated differences in morphological and morphometric hippocampal features between individuals affected by DTD (N = 20) and healthy controls (N = 238). Specifically, we focused on a developmental anomaly of the hippocampus that is characterized by the incomplete infolding of hippocampal subfields during fetal development, giving the hippocampus a more round or pyramidal shape, called incomplete hippocampal inversion (IHI). We rated IHI according to standard criteria and extracted hippocampal subfield volumes after FreeSurfer's automatic segmentation. We observed similar IHI prevalence in the group of individuals with DTD with respect to the control population. Neither differences in whole hippocampal nor major hippocampal subfield volumes have been observed between groups. However, when assessing the IHI independent criteria, we observed that the hippocampus in the DTD group is more medially positioned comparing to the control group. In addition, we observed bigger hippocampal fissure volume for the DTD comparing to the control group. Both of these findings were stronger for the right hippocampus comparing to the left. Our results provide new insights regarding the hippocampal morphology of individuals affected by DTD, highlighting the role of structural anomalies during early prenatal development in line with the developmental nature of the spatial disorientation deficit.


Asunto(s)
Confusión , Imagen por Resonancia Magnética , Humanos , Encéfalo , Hipocampo/diagnóstico por imagen , Lóbulo Temporal
3.
Front Syst Neurosci ; 17: 1163147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205053

RESUMEN

Previous studies indicated that spatial neglect is characterized by widespread alteration of resting-state functional connectivity and changes in the functional topology of large-scale brain systems. However, whether such network modulations exhibit temporal fluctuations related to spatial neglect is still largely unknown. This study investigated the association between brain states and spatial neglect after the onset of focal brain lesions. A cohort of right-hemisphere stroke patients (n = 20) underwent neuropsychological assessment of neglect as well as structural and resting-state functional MRI sessions within 2 weeks from stroke onset. Brain states were identified using dynamic functional connectivity as estimated by the sliding window approach followed by clustering of seven resting state networks. The networks included visual, dorsal attention, sensorimotor, cingulo-opercular, language, fronto-parietal, and default mode networks. The analyses on the whole cohort of patients, i.e., with and without neglect, identified two distinct brain states characterized by different degrees of brain modularity and system segregation. Compared to non-neglect patients, neglect subjects spent more time in less modular and segregated state characterized by weak intra-network coupling and sparse inter-network interactions. By contrast, patients without neglect dwelt mainly in more modular and segregated states, which displayed robust intra-network connectivity and anti-correlations among task-positive and task-negative systems. Notably, correlational analyses indicated that patients exhibiting more severe neglect spent more time and dwelt more often in the state featuring low brain modularity and system segregation and vice versa. Furthermore, separate analyses on neglect vs. non-neglect patients yielded two distinct brain states for each sub-cohort. A state featuring widespread strong connections within and between networks and low modularity and system segregation was detected only in the neglect group. Such a connectivity profile blurred the distinction among functional systems. Finally, a state exhibiting a clear separation among modules with strong positive intra-network and negative inter-network connectivity was found only in the non-neglect group. Overall, our results indicate that stroke yielding spatial attention deficits affects the time-varying properties of functional interactions among large-scale networks. These findings provide further insights into the pathophysiology of spatial neglect and its treatment.

4.
Psychol Res ; 87(3): 787-799, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35794247

RESUMEN

As classically captured in the notion of affordance, the natural environment presents animals with multiple opportunities for action and locomotion appears as the privileged form of action to cover distance in the extrapersonal space/environment. We have recently described a facilitation effect, known as "macro-affordance", for the execution of walking-related actions in response to distant vs. near objects/locations in the extrapersonal space. However, since the manipulation of distance was coextensive to landmark-objects contained in the environment and to the environmental layout per se, the relative contribution of these two factors remains undetermined. In addition, since the effect was originally described in the context of an incidental priming paradigm, it is still unknown whether it was specifically associated with an implicit coding of environmental distance. Here, across three experiments, we examined the degree to which the "macro-affordance" effect reflects (i) the encoding of environmental vs. landmark-objects' distance, (ii) the involvement of an implicit vs. controlled system, (iii) a foot-effector specificity. The results showed that the "macro-affordance" effect is more efficiently triggered by the framing distance of the environmental layout (far/wide/panoramic vs. near/close/restricted) rather than of isolated landmark-objects in the environment and that it only emerges when the distance dimension is implicitly processed within the incidental priming paradigm. The results additionally suggested a specificity of the effect for foot- vs. hand-related actions. The present findings suggest that macro-affordances reflect an implicit coding of spatial features of the environmental layout and viewer-environment relationships that preferentially guide a walking-related exploration of the spatial environment.


Asunto(s)
Locomoción , Caminata , Animales , Humanos , Pie , Extremidad Inferior , Mano
5.
Psychol Res ; 87(6): 1743-1752, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36478126

RESUMEN

Recent works have proposed that spatial mechanisms in the hippocampal-entorhinal system might have originally developed to represent distances and positions in the physical space and successively evolved to represent experience and memory in the mental space (Bellmund et al. 2018; Bottini and Doeller 2020). Within this phylogenetic continuity hypothesis (Buzsáki and Moser 2013), mechanisms supporting episodic and semantic memory would have evolved from egocentric and allocentric spatial navigation mechanisms, respectively. Recent studies have described a specific relationship between human performance in egocentric navigation and episodic memory (Committeri et al. 2020; Fragueiro et al. 2021), representing the first behavioral support to this hypothesis. Here, we tested the causal relationship among egocentric navigation and both episodic and semantic components of declarative memory. We conducted two experiments on healthy young adults: in the first experiment, participants were submitted to a navigational training based on path integration, while in the second experiment, participants completed a control training based on visual-perceptual learning. Performance in a set of memory tasks assessing episodic, semantic and short-term memory was compared among the pre- vs. post-training sessions. The results indicated a significant improvement of the episodic memory but not of the semantic or the short-term memory performance following the navigational training. In addition, no modulations of performance across the three memory tasks were observed following the control perceptual training. Our findings provide brand-new evidence of a potential causal association between mechanisms of egocentric navigation and episodic memory, thereby further supporting the phylogenetic continuity hypothesis between navigation and memory mechanisms as well as offering new insights about possible clinical applications of navigational trainings for memory functions/dysfunctions.


Asunto(s)
Memoria Episódica , Navegación Espacial , Adulto Joven , Humanos , Filogenia , Aprendizaje Espacial , Hipocampo , Poder Psicológico , Memoria Espacial , Percepción Espacial
6.
Brain Connect ; 13(8): 473-486, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-34269620

RESUMEN

Background/Purpose: To identify brain hubs that are behaviorally relevant for neglect after stroke as well as to characterize their functional architecture of communication. Methods: Twenty acute right hemisphere damaged patients underwent neuropsychological and resting-state functional magnetic resonance imaging sessions. Spatial neglect was assessed by means of the Center of Cancellation on the Bells Cancellation Test. For each patient, resting-state functional connectivity matrices were derived by adopting a brain parcellation scheme consisting of 153 nodes. For every node, we extracted its betweenness centrality (BC) defined as the portion of all shortest paths in the connectome involving such node. Then, neglect hubs were identified as those regions showing a high correlation between their BC and neglect scores. Results: A first set of neglect hubs was identified in multiple systems including dorsal attention and ventral attention, default mode, and frontoparietal executive-control networks within the damaged hemisphere as well as in the posterior and anterior cingulate cortex. Such cortical regions exhibited a loss of BC and increased (i.e., less efficient) weighted shortest path length (WSPL) related to severe neglect. Conversely, a second group of neglect hubs found in visual and motor networks, in the undamaged hemisphere, exhibited a pathological increase of BC and reduction of WSPL associated with severe neglect. Conclusion: The topological reorganization of the brain in neglect patients might reflect a maladaptive shift in processing spatial information from higher level associative-control systems to lower level visual and sensory-motor processing areas after a right hemisphere lesion.


Asunto(s)
Conectoma , Trastornos de la Percepción , Accidente Cerebrovascular , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Trastornos de la Percepción/etiología , Trastornos de la Percepción/complicaciones , Mapeo Encefálico
7.
Brain Connect ; 13(8): 464-472, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36128806

RESUMEN

Background/Purpose: To investigate the association between the degree of spatial neglect and the changes of brain system segregation (SyS; i.e., the ratio of the extent to which brain networks interact internally and with each other) after stroke. Methods: A cohort of 20 patients with right hemisphere lesion was submitted to neuropsychological assessment as well as to resting-state functional magnetic resonance imaging session at acute stage after stroke. The severity of spatial neglect was quantified using the Center of Cancellation (CoC) scores of the Bells cancellation test. For each patient, resting-state functional connectivity (FC) matrices were assessed by implementing a brain parcellation of nine networks that included the visual network, dorsal attention network (DAN), ventral attention network (VAN), sensorimotor network (SMN), auditory network, cingulo-opercular network, language network, frontoparietal network, and default mode network (DMN). For each patient and each network, we then computed the SyS derived by subtracting the between-network FC from the within-network FC (normalized by the within-network FC). Finally, for each network, the CoC scores were correlated with the SyS. Results: The correlational analyses indicated a negative association between CoC and SyS in the DAN, VAN, SMN, and DMN (q < 0.05 false discovery rate [FDR]-corrected). Patients with more severe spatial neglect exhibited lower SyS and vice versa. Conclusion: The loss of segregation in multiple and specific networks provides a functional framework for the deficits in spatial and nonspatial attention and motor/exploratory ability observed in neglect patients.

8.
Exp Brain Res ; 240(12): 3183-3192, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36260096

RESUMEN

Body representation disorders are complex, varied, striking, and very disabling in most cases. Deficits of body representation have been described after lesions to multimodal and sensorimotor cortical areas. A few studies have reported the effects of tumors on the representation of the body, but little is known about the changes after tumor resection. Moreover, the impact of brain lesions on the hand size representation has been investigated in few clinical cases. Hands are of special importance, as no other body part has the ability for movement and interaction with the environment that the hands have, and we use them for a multitude of daily activities. Studies with clinical population can add further knowledge into the way hands are represented. Here, we report a single case study of a patient (AM) who was an expert bodybuilder and underwent a surgery to remove a glioblastoma in the left posterior prefrontal and precentral cortex at the level of the hand's motor region. Pre- (20 days) and post- (4 months) surgery assessment did not show any motor or cognitive impairments. A hand localization task was used, before and after surgery (12 months), to measure possible changes of the metric representation of his right hand. Results showed a post-surgery modulation of the typically distorted hand representation, with an overall accuracy improvement, especially on width dimension. These findings support the direct involvement of sensorimotor areas in the implicit representation of the body size and its relevance on defining specific size representation dimensions.


Asunto(s)
Imagen Corporal , Neoplasias Encefálicas , Glioblastoma , Mano , Procedimientos Neuroquirúrgicos , Corteza Sensoriomotora , Humanos , Imagen Corporal/psicología , Neoplasias Encefálicas/fisiopatología , Neoplasias Encefálicas/psicología , Neoplasias Encefálicas/cirugía , Mano/fisiopatología , Movimiento/fisiología , Corteza Sensoriomotora/fisiopatología , Glioblastoma/fisiopatología , Glioblastoma/psicología , Glioblastoma/cirugía , Procedimientos Neuroquirúrgicos/efectos adversos , Procedimientos Neuroquirúrgicos/psicología , Tamaño Corporal
9.
High Alt Med Biol ; 23(1): 57-68, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35104160

RESUMEN

Committeri Giorgia, Danilo Bondi, Carlo Sestieri, Ginevra Di Matteo, Claudia Piervincenzi, Christian Doria, Roberto Ruffini, Antonello Baldassarre, Tiziana Pietrangelo, Rosamaria Sepe, Riccardo Navarra, Piero Chiacchiaretta, Antonio Ferretti, and Vittore Verratti. Neuropsychological and neuroimaging correlates of high-altitude hypoxia trekking during the "Gokyo Khumbu/Ama Dablam" expedition. High Alt Med Biol. 23:57-68, 2022. Background: Altitude hypoxia exposure may produce cognitive detrimental adaptations and damage to the brain. We aimed at investigating the effects of trekking and hypoxia on neuropsychological and neuroimaging measures. Methods: We recruited two balanced groups of healthy adults, trekkers (n = 12, 6 F and 6 M, trekking in altitude hypoxia) and controls (gender- and age-matched), who were tested before (baseline), during (5,000 m, after 9 days of trekking), and after the expedition for state anxiety, depression, verbal fluency, verbal short-term memory, and working memory. Personality and trait anxiety were also assessed at a baseline level. Neuroimaging measures of cerebral perfusion (arterial spin labeling), white-matter microstructural integrity (diffusion tensor imaging), and resting-state functional connectivity (functional magnetic resonance imaging) were assessed before and after the expedition in the group of trekkers. Results: At baseline, the trekkers showed lower trait anxiety (p = 0.003) and conscientiousness (p = 0.03) than the control group. State anxiety was lower in the trekkers throughout the study (p < 0.001), and state anxiety and depression decreased at the end of the study in both groups (p = 0.043 and p = 0.007, respectively). Verbal fluency increased at the end of the study in both groups (p < 0.001), whereas verbal short-term memory and working memory performance did not change. No significant differences between before and after the expedition were found for neuroimaging measures. Conclusions: We argue that the observed differences in the neuropsychological measures mainly reflect aspecific familiarity and learning effects due to the repeated execution of the same questionnaires and task. The present results thus suggest that detrimental effects on neuropsychological and neuroimaging measures do not necessarily occur as a consequence of short-term exposure to altitude hypoxia up to 5,000 m, especially in the absence of altitude sickness.


Asunto(s)
Mal de Altura , Expediciones , Montañismo , Adaptación Fisiológica , Adulto , Altitud , Mal de Altura/diagnóstico por imagen , Imagen de Difusión Tensora , Humanos , Hipoxia/diagnóstico por imagen
10.
Case Rep Neurol ; 13(3): 677-686, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899252

RESUMEN

In the present case report, we investigated the cortical networks of a patient (DDA) affected by right parietal stroke who showed a constructional phenomenon, in which when coping and recalling from memory a complex figure, the model was reproduced rotated of 90° along the vertical axis. Previous studies suggested that rotation on copy is associated with visuospatial impairments and abnormalities in parietal cortex, whereas rotation on recall might be related to executive deficits and dysfunction of frontal regions. Here, we computed the DDA's resting-state functional connectivity (FC) derived from cortical regions of the dorsal attention (DAN) and the frontal portion of the executive-control network (fECN), which are involved in the control of visuospatial attention and multiple executive functions, respectively. We observed that, as compared to a control group of right stroke patients without drawing rotation, DDA exhibited selective increased FC of the DAN and fECN, but not of task-irrelevant language network, within the undamaged hemisphere. These patterns might reflect a pathological communication in such networks leading to impaired attentional and executive operations required to reproduce the model in the correct orientation. Notably, such enhancement of FC was not detected in a patient with a comparable neuropsychological profile as DDA, yet without rotated drawing, suggesting that network-specific modulations in DDA might be ascribed to the constructional phenomenon of rotated drawing.

11.
Brain Sci ; 11(11)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34827505

RESUMEN

One fundamental principle of the brain functional organization is the elaboration of sensory information for the specification of action plans that are most appropriate for interaction with the environment. Using an incidental go/no-go priming paradigm, we have previously shown a facilitation effect for the execution of a walking-related action in response to far vs. near objects/locations in the extrapersonal space, and this effect has been called "macro-affordance" to reflect the role of locomotion in the coverage of extrapersonal distance. Here, we investigated the neurophysiological underpinnings of such an effect by recording scalp electroencephalography (EEG) from 30 human participants during the same paradigm. The results of a whole-brain analysis indicated a significant modulation of the event-related potentials (ERPs) both during prime and target stimulus presentation. Specifically, consistent with a mechanism of action anticipation and automatic activation of affordances, a stronger ERP was observed in response to prime images framing the environment from a far vs. near distance, and this modulation was localized in dorso-medial motor regions. In addition, an inversion of polarity for far vs. near conditions was observed during the subsequent target period in dorso-medial parietal regions associated with spatially directed foot-related actions. These findings were interpreted within the framework of embodied models of brain functioning as arising from a mechanism of motor-anticipation and subsequent prediction error which was guided by the preferential affordance relationship between the distant large-scale environment and locomotion. More in general, our findings reveal a sensory-motor mechanism for the processing of walking-related environmental affordances.

12.
Brain Sci ; 11(10)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34679321

RESUMEN

Anti-contagion measures restricting individual freedom, such as social distancing and wearing a mask, are crucial to contain the COVID-19 pandemic. Decision-making patterns and attitudes about uncertainty can highly influence the adherence to these restrictive measures. Here we investigated the relationship between risky behavior and individual preferences for immediate vs. delayed reward, as indexed by temporal discounting (TD), as well as the association between these measures and confidence in the future, perceived risk and confidence in the containment measures. These measures were collected through an online survey administered on 353 participants at the end of the more restrictive phase of the first Italian lockdown. The results showed an unexpected inverse relationship between the individual pattern of choice preferences and risky behavior, with an overall greater adherence to containment measures in more discounter participants. These findings were interpreted in terms of a reframing process in which behaviors aimed at protecting oneself from contagion turn into immediate gains rather than losses. Interestingly, an excessive confidence in a better future was correlated with a higher tendency to assume risky behavior, thereby highlighting the downside of an overly and blindly optimistic view.

13.
Evol Psychol ; 19(3): 14747049211040823, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34569881

RESUMEN

Based on the neuro-functional association between navigation in the physical and the mental space at the level of the hippocampal-entorhinal system, Buzsáki and Moser (2013) have hypothesized a phylogenetic continuity between spatial navigation and declarative memory functions. According to this proposal, mechanisms of episodic and semantic memory would have evolved from mechanisms of self-based and map-based navigation in the physical space, respectively. Using classic versions of path integration and item recognition tasks in human subjects, we have recently described a correlation and a predictive relationship between abilities in egocentric navigation and episodic memory. Here we aim at confirming and extending this association to the dynamic component of sequential updating in the physical (egocentric navigation) and mental (episodic memory) space, and at investigating the relationship of these self-centered abilities with semantic memory. To this aim, we developed three new experimental tasks in which the dynamic component of updating information is particularly emphasized in the spatial, the temporal, and the semantic domain. The contribution of visual short-term memory to the three tasks was also controlled by including an additional task. The results confirmed the existence of a direct and predictive relationship between self-based spatial navigation and episodic memory. We also found a significant association between egocentric navigation and semantic memory, but this relationship was explained by short-term memory abilities and was mediated by episodic memory functions. Our results support the hypothesis of an evolutionary link between mechanisms that allow spatial navigation in the physical space and time travel in the mental space.


Asunto(s)
Memoria Episódica , Navegación Espacial , Hipocampo , Humanos , Filogenia , Reconocimiento en Psicología
14.
Neuroimage ; 238: 118239, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34119637

RESUMEN

Learning through intensive practice has been largely observed in motor, sensory and higher-order cognitive processing. Neuroimaging studies have shown that learning phases are associated with different patterns of functional and structural neural plasticity in spatially distributed brain systems. Yet, it is unknown whether distinct neural signatures before practice can foster different subsequent learning stages over time. Here, we employed a bimanual implicit sequence reaction time task (SRTT) to investigate whether the rates of early (one day after practice) and late (one month after practice) post-training motor skill learning were predicted by distinct patterns of pre-training resting state functional connectivity (rs-FC), recorded with functional MRI. We observed that both motor learning descriptors were positively correlated with the strength of rs-FC among pairs of regions within a SRTT-relevant network comprising cerebellar as well as cortical and subcortical motor areas. Crucially, we detected a double dissociation such that early post-training learning was significantly associated with the functional connections within cerebellar regions, whereas late post-training learning was significantly related to the functional connections between cortical and subcortical motor areas. These findings indicate that spontaneous brain activity prospectively carries out behaviorally relevant information to perform experience-dependent cognitive operations far distant in time.


Asunto(s)
Mapeo Encefálico/métodos , Cerebelo/fisiología , Imagen por Resonancia Magnética/métodos , Destreza Motora/fisiología , Tiempo de Reacción/fisiología , Conectoma , Mano , Humanos , Aprendizaje/fisiología , Estimulación Luminosa , Desempeño Psicomotor/fisiología , Descanso/fisiología
15.
Front Neurol ; 12: 658025, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054699

RESUMEN

Introduction: Pre-surgical mapping is clinically essential in the surgical management of brain tumors to preserve functions. A common technique to localize eloquent areas is functional magnetic resonance imaging (fMRI). In tumors involving the peri-rolandic regions, the finger tapping task (FTT) is typically administered to delineate the functional activation of hand-knob area. However, its selectivity may be limited. Thus, here, a novel cue-induced fMRI task was tested, the visual-triggered finger movement task (VFMT), aimed at eliciting a more accurate functional cortical mapping of the hand region as compared with FTT. Method: Twenty patients with glioma in the peri-rolandic regions underwent pre-operative mapping performing both FTT and VFMT. The fMRI data were analyzed for surgical procedures. When the craniotomy allowed to expose the motor cortex, the correspondence with intraoperative direct electrical stimulation (DES) was evaluated through sensitivity and specificity (mean sites = 11) calculated as percentage of true-positive and true-negative rates, respectively. Results: Both at group level and at single-subject level, differences among the tasks emerged in the functional representation of the hand-knob. Compared with FTT, VFMT showed a well-localized activation within the hand motor area and a less widespread activation in associative regions. Intraoperative DES confirmed the greater specificity (97%) and sensitivity (100%) of the VFMT in determining motor eloquent areas. Conclusion: The study provides a novel, external-triggered fMRI task for pre-surgical motor mapping. Compared with the traditional FTT, the new VFMT may have potential implications in clinical fMRI and surgical management due to its focal identification of the hand-knob region and good correspondence to intraoperative DES.

16.
Neuropsychologia ; 150: 107696, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33253691

RESUMEN

We have recently described a facilitation effect for the execution of a walking-related action in response to distant objects/locations in the extrapersonal space. Based on the parallelism with the well-known effect of "micro-affordance", observed during the execution of functionally appropriate hand-related actions towards manipulable objects, we have referred to this effect in terms of "macro-affordance". Here we used transcranical magnetic stimulation (TMS) to investigate whether a foot-related region located in the human dorsal precuneate cortex plays a causal role in the generation and maintenance of such behavioral effect. This question was addressed by comparing the magnitude of the facilitation effect during an incidental go/no-go task, i.e. advantage for walking-related actions to pictures framing an environment from a far vs. near distance, during three different TMS conditions. The three TMS conditions were collected in all subjects in a randomized order and included stimulation of: i. a foot-related region in the anterior precuneus, ii. a control region in the middle intraparietal sulcus (mIPS), and iii. a sham condition. Enrollment in the TMS protocol was based on analysis of individual performance during a preliminary session conducted using a sham stimulation. TMS was administered at a low frequency range before the beginning of each condition. The results showed that stimulation of the foot-related region in the anterior precuneus produced a significant reduction of the walking-related facilitation effect as compared to both stimulation of the active-control region and the non-active sham stimulation. These findings suggest that the foot-related sensory-motor system directly participates in the process of extraction of the spatial features (i.e. distance) from an environmental scene that are useful for locomotion. More in general, these findings support an automatic coding of environmental affordance or "macro-affordances" in the walking-related sensory-motor system.


Asunto(s)
Corteza Motora , Caminata , Potenciales Evocados Motores , Mano , Humanos , Estimulación Magnética Transcraneal
17.
Front Hum Neurosci ; 14: 574224, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33328930

RESUMEN

The medial temporal lobe supports both navigation and declarative memory. On this basis, a theory of phylogenetic continuity has been proposed according to which episodic and semantic memories have evolved from egocentric (e.g., path integration) and allocentric (e.g., map-based) navigation in the physical world, respectively. Here, we explored the behavioral significance of this neurophysiological model by investigating the relationship between the performance of healthy individuals on a path integration and an episodic memory task. We investigated the path integration performance through a proprioceptive Triangle Completion Task and assessed episodic memory through a picture recognition task. We evaluated the specificity of the association between performance in these two tasks by including in the study design a verbal semantic memory task. We also controlled for the effect of attention and working memory and tested the robustness of the results by including alternative versions of the path integration and semantic memory tasks. We found a significant positive correlation between the performance on the path integration the episodic, but not semantic, memory tasks. This pattern of correlation was not explained by general cognitive abilities and persisted also when considering a visual path integration task and a non-verbal semantic memory task. Importantly, a cross-validation analysis showed that participants' egocentric navigation abilities reliably predicted episodic memory performance. Altogether, our findings support the hypothesis of a phylogenetic continuity between egocentric navigation and episodic memory and pave the way for future research on the potential causal role of egocentric navigation on multiple forms of episodic memory.

18.
Addict Behav ; 109: 106463, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32454227

RESUMEN

Gambling Disorder (GD) is a behavioral addiction characterized by the persistence of recurrent gambling behaviors despite serious adverse consequences. One of the key features of GD is a marked inability to delay gratification and an overall impairment of decision-making mechanisms. Indeed, in intertemporal choice (ITC) tasks, GD patients usually display a marked tendency to prefer smaller-sooner over larger-later rewards (temporal discounting, TD). However, ITC represents a highly verbal/explicit measure, and as such it might not be sensitive to implicit decision biases. Here we sought to uncover the implicit mechanisms underlying the ITC impairment in GD by employing the process-tracing method of mouse kinematics. To this aim, we collected and analyzed ITCs and kinematics measures from 24 GD patients and 23 matched healthy control participants (HC). In line with the relevant literature, the results showed that GD patients discounted future rewards more steeply compared to HCs. Additionally, the results of kinematics analyses showed that patients were characterized by a strong bias toward the immediate option, which was associated with straight-line trajectories. Conversely, the delayed option was selected with edge-curved trajectories, indicating a bias toward the immediate option which was revised in later stages of processing. Interestingly, kinematics indices were also found to be predictive of individual discounting preferences (i.e., discount rates) across the two groups. Taken together, these results suggest that kinematics indices, by revealing hidden and implicit patterns of attraction toward the unselected choice option, may represent reliable behavioral markers of TD in gambling disorder.


Asunto(s)
Conducta Adictiva , Descuento por Demora , Juego de Azar , Animales , Conducta de Elección , Cognición , Humanos , Ratones , Recompensa
19.
Behav Brain Res ; 388: 112663, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32360166

RESUMEN

Human locomotion is the product of complex dynamic systems, which rely on physical capacities as well as cognitive functions. In our daily life, we mostly experience forward walking, but also backward stepping can occur, as in protective stepping. In this work, we investigated the electroencephalographic (EEG) correlates of cognitive processing underpinning step initiation by means of movement-related cortical potentials (MRCPs) analysis and force-plates recordings. Healthy young volunteers (N = 11) performed self-paced forward- and backward-oriented steps on two force platforms, which were synchronized to simultaneous EEG recordings. MRCPs and their source localization analyses were computed. Results demonstrate the involvement of cognitive processing during step preparation and execution, as showed by the prefrontal activity, which was enhanced in backward stepping. Further, the parietal activity was larger in forward than backward stepping, while motor-related regions were involved in both step directions. Thus, the neural timing and sources of forward and backward stepping suggest a functional distinction of these two actions, which undergo different cortical organizations. Backward stepping requires enhanced cognitive control and can be regarded as an avoidance behavior, while forward stepping would be assimilated to an oriented-to-action behavior mainly localized over parietal areas. In conclusion, preparing body locomotion involves high cognitive processing, with step direction showing different cortical organization and functional specialization.


Asunto(s)
Encéfalo/fisiología , Caminata/fisiología , Adulto , Cognición/fisiología , Electroencefalografía , Femenino , Humanos , Masculino , Vías Nerviosas/fisiología , Adulto Joven
20.
J Aging Res ; 2020: 5694790, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32148961

RESUMEN

According to the action-specific theory of perception, a person's dynamic ability to act in the environment affects her/his spatial perception. Empirical evidence shows that the elderly perceive distances as farther compared with younger adults and that the harder the ground surface to walk, the farther the perceived distance. Such results suggest a general perceptual readaptation promoted by the aging process that is fine-tuned with the decline of the motor resources. However, it is still unknown whether the elderly space perception is affected by interindividual differences in their functional autonomy (FA) and whether the decline of motor resources affects spatial categorization only when distances are judged with reference to the observer's own body or also when they are judged with reference to the body of another agent present in the scene. To this aim, a sample of elderly adults with preserved cognitive functions but different levels of FA, measured through the Instrumental Activity of Daily Living (IADL) scale, were enrolled and tested on the extrapersonal space categorization task. This task requires judging the position of a target as "Near" or "Far" with respect to different reference frames (RFs): centered on the observer's body (Self RF) or centered on external elements, like another body (Other RF) or an object (Object RF). Results indicated that the higher the level of FA, the wider the space categorized as "Near" when adopting as reference frame our own body or the body of another agent in the scene, but not a static object. In conclusion, the individual functional autonomy of elderly individuals, which is strongly influenced by motor resources and efficiency, modulates how the surrounding space is represented, but only when the distance judgment implies an agent body, thus providing new relevant data for recent embodied cognition models of aging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...