Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Respir Care ; 69(8): 990-998, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38744475

RESUMEN

BACKGROUND: Patients with obesity are at increased risk of postoperative pulmonary complications. CPAP has been used successfully to prevent and treat acute respiratory failure, but in many clinical scenarios, high-flow nasal cannula (HFNC) therapy is emerging as a possible alternative. We aimed to compare HFNC and CPAP in a sequential study measuring their effects on gas exchange, lung volumes, and gas distribution within the lungs measured through electrical impedance tomography (EIT). METHODS: We enrolled 15 subjects undergoing laparoscopic bariatric surgery. Postoperatively they underwent the following oxygen therapy protocol (10 min/step): baseline air-entrainment mask, HFNC at increasing (40, 60, 80, and 100 L/min) and decreasing flows (80, 60, and 40 L/min), washout air-entrainment mask and CPAP (10 cm H2O). Primary outcome was the change in end-expiratory lung impedance (ΔEELI) measured by EIT data processing. Secondary outcomes were changes of global inhomogeneity (GI) index and tidal impedance variation (TIV) measured by EIT, arterial oxygenation, carbon dioxide content, pH, respiratory frequency, and subject's comfort. RESULTS: Thirteen subjects completed the study. Compared to baseline, ΔEELI was higher during 10 cm H2O CPAP (P = .001) and HFNC 100 L/min (P = .02), as well as during decreasing flows HFNC 80, 60, and 40 L/min (P = .008, .004, and .02, respectively). GI index was lower during HFNC 100 compared to HFNC 60increasing (P = .044), HFNC 60decreasing (P = .02) HFNC 40decreasing (P = .01), and during 10 cm H2O CPAP compared to washout period (P = .01) and HFNC 40decreasing (P = .03). TIV was higher during 10 cm H2O CPAP compared to baseline (P = .008). Compared to baseline, breathing frequency was lower at HFNC 60increasing, HFNC 100, and HFNC 80decreasing (P = .01, .02, and .03, respectively). No differences were detected regarding arterial oxygenation, carbon dioxide content, pH, and subject's comfort. CONCLUSIONS: HFNC at a flow of 100 L/min induced postoperative pulmonary recruitment in bariatric subjects, with no significant differences compared to 10 cm H2O CPAP in terms of lung recruitment and ventilation distribution.


Asunto(s)
Cirugía Bariátrica , Cánula , Presión de las Vías Aéreas Positiva Contínua , Impedancia Eléctrica , Terapia por Inhalación de Oxígeno , Humanos , Femenino , Presión de las Vías Aéreas Positiva Contínua/métodos , Masculino , Adulto , Persona de Mediana Edad , Terapia por Inhalación de Oxígeno/métodos , Mediciones del Volumen Pulmonar , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/prevención & control , Intercambio Gaseoso Pulmonar , Pulmón/fisiopatología , Insuficiencia Respiratoria/terapia , Insuficiencia Respiratoria/etiología , Volumen de Ventilación Pulmonar
2.
J Clin Monit Comput ; 35(4): 885-890, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32588314

RESUMEN

To provide an in vitro estimation of the pressure drop across tracheal tubes (ΔPTT) in the face of given pulsatile frequencies and peak pressures (Pwork) delivered by a high-frequency percussive ventilator (HFPV) applied to a lung model. Tracheal tubes (TT) 6.5, 7.5 and 8.0 were connected to a test lung simulating the respiratory system resistive (R = 5, 20, 50 cmH2O/L/s) and elastic (C = 10, 20, and 50 mL/cmH2O) loads. The model was ventilated by HFPV with a pulse inspiratory peak pressure (work pressure Pwork) augmented in 5-cmH2O steps from 20 to 45 cmH2O, yielding 6 diverse airflows. The percussive frequency (f) was set to 300, 500 and 700 cycles/min, respectively. Pressure (Paw and Ptr) and flow (V') measurements were performed for all 162 possible combinations of loads, frequencies, and work pressures for each TT size, thus yielding 486 determinations. For each respiratory cycle ΔPTT was calculated by subtracting each peak Ptr from its corresponding peak Paw. A non-linear model was constructed to assess the relationships between single parameters. Performance of the produced model was measured in terms of root mean square error (RMSE) and the coefficient of determination (r2). ΔPTT was predicted by Pwork (exponential Gaussian relationship), resistance (quadratic and linear terms), frequency (quadratic and linear terms) and tube diameter (linear term), but not by compliance. RMSE of the model on the testing dataset was 1.17 cmH2O, r2 was 0.79 and estimation error was lower than 1 cmH2O in 68% of cases. As a result, even without a flow value, the physician would be able to evaluate ΔPTT pressure. If the present results of our bench study could be clinically confirmed, the use of a nonconventional ventilatory strategy as HFPV, would be safer and easier.


Asunto(s)
Ventilación de Alta Frecuencia , Humanos , Pulmón , Respiración , Respiración Artificial
3.
Front Physiol ; 9: 920, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30057557

RESUMEN

Background: Laparoscopic surgery with pneumoperitoneum increases respiratory system elastance due to the augmented intra-abdominal pressure. We aim to evaluate to which extent positive end-expiratory pressure (PEEP) is able to counteract abdominal hypertension preventing progressive lung collapse and how rib cage elastance influences PEEP effect. Methods: Forty-four Wistar rats were mechanically ventilated and randomly assigned into three groups: control (CTRL), pneumoperitoneum (PPT) and pneumoperitoneum with restricted rib cage (PPT-RC). A pressure-volume (PV) curve followed by a recruitment maneuver and a decremental PEEP trial were performed in all groups. Thereafter, animals were ventilated using PEEP of 3 and 8 cmH2O divided into two subgroups used to evaluate respiratory mechanics or computed tomography (CT) images. In 26 rats, we compared respiratory system elastance (Ers) at the two PEEP levels. In 18 animals, CT images were acquired to calculate total lung volume (TLV), total volume and air volume in six anatomically delimited regions of interest (three along the cephalo-caudal and three along the ventro-dorsal axes). Results: PEEP of minimal Ers was similar in CTRL and PPT groups (3.8 ± 0.45 and 3.5 ± 3.89 cmH2O, respectively) and differed from PPT-RC group (9.8 ± 0.63 cmH2O). Chest restriction determined a right- and downward shift of the PV curve, increased Ers and diminished TLV and lung aeration. Increasing PEEP augmented TLV in CTRL group (11.8 ± 1.3 to 13.6 ± 2 ml, p < 0.05), and relative air content in the apex of PPT group (3.5 ± 1.4 to 4.6 ± 1.4% TLV, p < 0.03) and in the middle zones in PPT-RC group (21.4 ± 1.9 to 25.3 ± 2.1% TLV cephalo-caudally and 18.1 ± 4.3 to 22.0 ± 3.3% TLV ventro-dorsally, p < 0.005). Conclusion: Regional lung recruitment potential during pneumoperitoneum depends on rib cage elastance, reinforcing the concept of PEEP individualization according to the patient's condition.

4.
J Thorac Dis ; 10(Suppl 4): S542-S554, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29629201

RESUMEN

In thoracic surgery, the introduction of video-assisted thoracoscopic techniques has allowed the development of fast-track protocols, with shorter hospital lengths of stay and improved outcomes. The perioperative management needs to be optimized accordingly, with the goal of reducing postoperative complications and speeding recovery times. Premedication performed in the operative room should be wisely administered because often linked to late discharge from the post-anesthesia care unit (PACU). Inhalatory anesthesia, when possible, should be preferred based on protective effects on postoperative lung inflammation. Deep neuromuscular blockade should be pursued and carefully monitored, and an appropriate reversal administered before extubation. Management of one-lung ventilation (OLV) needs to be optimized to prevent not only intraoperative hypoxemia but also postoperative acute lung injury (ALI): protective ventilation strategies are therefore to be implemented. Locoregional techniques should be favored over intravenous analgesia: the thoracic epidural, the paravertebral block (PVB), the intercostal nerve block (ICNB), and the serratus anterior plane block (SAPB) are thoroughly reviewed and the most common dosages are reported. Fluid therapy needs to be administered critically, to avoid both overload and cardiovascular compromisation. All these practices are analyzed singularly with the aid of the most recent evidences aimed at the best patient care. Finally, a few notes on some of the latest trends in research are presented, such as non-intubated video-assisted thoracoscopic surgery (VATS) and intravenous lidocaine.

5.
J Clin Monit Comput ; 31(2): 273-280, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27062381

RESUMEN

Recently, the FLOW-i anaesthesia ventilator was developed based on the SERVO-i intensive care ventilator. The aim of this study was to test the FLOW-i's tidal volume delivery in the presence of a leak in the breathing circuit. We ventilated a test lung model in volume-, pressure-, and pressure-regulated volume-controlled modes (VC, PC, and PRVC, respectively) with a FLOW-i. First, the circuit remained airtight and the ventilator was tested with fresh gas flows of 6, 1, and 0.3 L/min in VC, PC, and PRVC modes and facing 4 combinations of different resistive and elastic loads. Second, a fixed leak in the breathing circuit was introduced and the measurements repeated. In the airtight system, FLOW-i maintained tidal volume (VT) and circuit pressure at approximately the set values, independently of respiratory mode, load, or fresh gas flow. In the leaking circuit, set VT = 500 mL, FLOW-i delivered higher VTs in PC (about 460 mL) than in VC and PRVC, where VTs were substantially less than 500 mL. Interestingly, VT did not differ appreciably from 6 to 0.3 L/min of fresh air flow among the 3 ventilatory modes. In the absence of leakage, peak inspiratory pressures were similar, while they were 35-45 % smaller in PRVC and VC than in PC mode in the presence of leaks. In conclusion, FLOW-i maintained VT (down to fresh gas flows of 0.3 L/min) to 90 % of its preset value in PC mode, which was 4-5 times greater than in VC or PRVC modes.


Asunto(s)
Anestesia por Circuito Cerrado/instrumentación , Cuidados Críticos , Respiración Artificial/instrumentación , Ventiladores Mecánicos , Dióxido de Carbono , Diseño de Equipo , Gases , Humanos , Modelos Lineales , Oxígeno , Respiración con Presión Positiva , Presión , Respiración , Mecánica Respiratoria , Volumen de Ventilación Pulmonar
6.
J Clin Monit Comput ; 28(2): 117-21, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24114079

RESUMEN

During low-flow manually-controlled anaesthesia (MCA) the anaesthetist needs constantly adjust end-tidal oxygen (EtO2) and anaesthetic concentrations (EtAA) to assure an adequate and safe anaesthesia. Recently introduced anaesthetic machines can automatically maintain those variables at target values, avoiding the burden on the anaesthetist. End-tidal-controlled anaesthesia (EtCA) and MCA provided by the same anaesthetic machine under the same fresh gas flow were compared. Eighty patients were prospectively observed: in MCA group (n = 40) target end-tidal sevoflurane (1%) and EtO2 concentrations (≥ 35%) were manually controlled by the anaesthetist. In EtCA group (n = 40) the same anaesthetic machine with an additional end-tidal control feature was used to reach the same targets, rendering automatic the achievement and maintenance of those targets. Anaesthetic machine characteristics, amount of consumed gases, oxygen and sevoflurane efficiencies, and the amount of interventions by the anaesthetist were recorded. In EtCA group EtAA was achieved later (145 s) than in MCA (71 s) and remained controlled thereafter. Even though the target expired gas fractions were achieved faster in MCA, manual adjustments were required throughout anaesthesia for both oxygen and sevoflurane. In MCA patients the number of manual adjustments to stabilize EtAA and EtO2 were 137 and 107, respectively; no adjustment was required in EtCA. Low-flow anaesthesia delivered with an anaesthetic machine able to automatically control EtAA and EtO2 provided the same clinical stability and avoided the continuous manual adjustment of delivered sevoflurane and oxygen concentrations. Hence, the anaesthetist could dedicate more time to the patient and operating room activities.


Asunto(s)
Anestesia por Inhalación/métodos , Quimioterapia Asistida por Computador/métodos , Éteres Metílicos/administración & dosificación , Éteres Metílicos/análisis , Monitoreo Intraoperatorio/métodos , Volumen de Ventilación Pulmonar/efectos de los fármacos , Carga de Trabajo , Anciano , Anestésicos por Inhalación/administración & dosificación , Anestésicos por Inhalación/análisis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Consumo de Oxígeno/efectos de los fármacos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Sevoflurano
7.
Crit Care Res Pract ; 2012: 506382, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22666567

RESUMEN

During bronchoscopy hypoxemia is commonly found and oxygen supply can be delivered by interfaces fed with high gas flows. Recently, the high-flow nasal cannula (HFNC) has been introduced for oxygen therapy in adults, but they have not been used so far during bronchoscopy in adults. Forty-five patients were randomly assigned to 3 groups receiving oxygen: 40 L/min through a Venturi mask (V40, N = 15), nasal cannula (N40, N = 15), and 60 L/min through a nasal cannula (N60, N = 15) during bronchoscopy. Gas exchange and circulatory variables were sampled before (FiO(2) = 0.21), at the end of bronchoscopy (FiO(2) = 0.5), and thereafter (V40, FiO(2) = 0.35). In 8 healthy volunteers oxygen was randomly delivered according to V40, N40, and N60 settings, and airway pressure was measured. At the end of bronchoscopy, N60 presented higher PaO(2), PaO(2)/FiO(2), and SpO(2) than V40 and N40 that did not differ between them. In the volunteers (N60) median airway pressure amounted to 3.6 cmH(2)O. Under a flow rate of 40 L/min both the Venturi mask and HFNC behaved similarly, but nasal cannula associated with a 60 L/min flow produced the better results, thus indicating its use in mild respiratory dysfunctions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA