Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FASEB J ; 38(14): e23842, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39037554

RESUMEN

G-protein-coupled receptors (GPCRs) belonging to the type 2 taste receptors (TAS2Rs) family are predominantly present in taste cells to allow the perception of bitter-tasting compounds. TAS2Rs have also been shown to be expressed in human airway smooth muscle (ASM), and TAS2R agonists relax ASM cells and bronchodilate airways despite elevating intracellular calcium. This calcium "paradox" (calcium mediates contraction by pro-contractile Gq-coupled GPCRs) and the mechanisms by which TAS2R agonists relax ASM remain poorly understood. To gain insight into pro-relaxant mechanisms effected by TAS2Rs, we employed an unbiased phosphoproteomic approach involving dual-mass spectrometry to determine differences in the phosphorylation of contractile-related proteins in ASM following the stimulation of cells with TAS2R agonists, histamine (an agonist of the Gq-coupled H1 histamine receptor) or isoproterenol (an agonist of the Gs-coupled ß2-adrenoceptor) alone or in combination. Our study identified differential phosphorylation of proteins regulating contraction, including A-kinase anchoring protein (AKAP)2, AKAP12, and RhoA guanine nucleotide exchange factor (ARHGEF)12. Subsequent signaling analyses revealed RhoA and the T853 residue on myosin light chain phosphatase (MYPT)1 as points of mechanistic divergence between TAS2R and Gs-coupled GPCR pathways. Unlike Gs-coupled receptor signaling, which inhibits histamine-induced myosin light chain (MLC)20 phosphorylation via protein kinase A (PKA)-dependent inhibition of intracellular calcium mobilization, HSP20 and ERK1/2 activity, TAS2Rs are shown to inhibit histamine-induced pMLC20 via inhibition of RhoA activity and MYPT1 phosphorylation at the T853 residue. These findings provide insight into the TAS2R signaling in ASM by defining a distinct signaling mechanism modulating inhibition of pMLC20 to relax contracted ASM.


Asunto(s)
Músculo Liso , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Músculo Liso/metabolismo , Músculo Liso/efectos de los fármacos , Fosforilación , Relajación Muscular/efectos de los fármacos , Histamina/metabolismo , Histamina/farmacología , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Isoproterenol/farmacología , Calcio/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Gusto/fisiología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Transducción de Señal , Células Cultivadas
2.
Respir Res ; 24(1): 155, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301818

RESUMEN

BACKGROUND: Diacylglycerol kinase (DGK) regulates intracellular signaling and functions by converting diacylglycerol (DAG) into phosphatidic acid. We previously demonstrated that DGK inhibition attenuates airway smooth muscle (ASM) cell proliferation, however, the mechanisms mediating this effect are not well established. Given the capacity of protein kinase A (PKA) to effect inhibition of ASM cells growth in response to mitogens, we employed multiple molecular and pharmacological approaches to examine the putative role of PKA in the inhibition of mitogen-induced ASM cell proliferation by the small molecular DGK inhibitor I (DGK I). METHODS: We assayed cell proliferation using CyQUANT™ NF assay, protein expression and phosphorylation using immunoblotting, and prostaglandin E2 (PGE2) secretion by ELISA. ASM cells stably expressing GFP or PKI-GFP (PKA inhibitory peptide-GFP chimera) were stimulated with platelet-derived growth factor (PDGF), or PDGF + DGK I, and cell proliferation was assessed. RESULTS: DGK inhibition reduced ASM cell proliferation in cells expressing GFP, but not in cells expressing PKI-GFP. DGK inhibition increased cyclooxygenase II (COXII) expression and PGE2 secretion over time to promote PKA activation as demonstrated by increased phosphorylation of (PKA substrates) VASP and CREB. COXII expression and PKA activation were significantly decreased in cells pre-treated with pan-PKC (Bis I), MEK (U0126), or ERK2 (Vx11e) inhibitors suggesting a role for PKC and ERK in the COXII-PGE2-mediated activation of PKA signaling by DGK inhibition. CONCLUSIONS: Our study provides insight into the molecular pathway (DAG-PKC/ERK-COXII-PGE2-PKA) regulated by DGK in ASM cells and identifies DGK as a potential therapeutic target for mitigating ASM cell proliferation that contributes to airway remodeling in asthma.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Diacilglicerol Quinasa , Diacilglicerol Quinasa/metabolismo , Diacilglicerol Quinasa/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Células Cultivadas , Proliferación Celular , Miocitos del Músculo Liso/metabolismo
3.
Handb Exp Pharmacol ; 275: 203-227, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33604702

RESUMEN

G protein-coupled receptors (GPCRs) play a central role in regulating the functions of a diverse range of cell types in the airway. Taste 2 receptor (T2R) family of GPCRs is responsible for the transduction of bitter taste; however, recent studies have demonstrated that different subtypes of T2Rs and key components of T2R signaling are expressed in several extra-oral tissues including airways with many physiological roles. In the lung, expression of T2Rs has been confirmed in multiple airway cell types including airway smooth muscle (ASM) cells, various epithelial cell subtypes, and on both resident and migratory immune cells. Most importantly, activation of T2Rs with a variety of putative agonists elicits unique signaling in ASM and specialized airway epithelial cells resulting in the inhibition of ASM contraction and proliferation, promotion of ciliary motility, and innate immune response in chemosensory airway epithelial cells. Here we discuss the expression of T2Rs and the mechanistic basis of their function in the structural cells of the airways with some useful insights on immune cells in the context of allergic asthma and other upper airway inflammatory disorders. Emphasis on T2R biology and pharmacology in airway cells has an ulterior goal of exploiting T2Rs for therapeutic benefit in obstructive airway diseases.


Asunto(s)
Sistema Respiratorio , Gusto , Humanos , Miocitos del Músculo Liso/metabolismo , Receptores Acoplados a Proteínas G/química , Transducción de Señal , Gusto/fisiología
4.
Curr Opin Pharmacol ; 51: 43-49, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32810767

RESUMEN

Airway smooth muscle (ASM) hyperresponsiveness and airway remodeling are pathological drivers of disease progression and mortality in asthma. Importantly, approximately 50% of affected individuals are unable to reliably manage disease symptoms using the current standard of care. Recently, T2Rs have been identified as a novel class of G protein-coupled receptors expressed in the airway that on activation can induce ASM relaxation and reduction in airway tone. Further, agonists of T2Rs may also remedy airway remodeling, which has been difficult to manage with currently available medications. In this review, we will discuss the recent developments in T2R biology and their role in cellular physiology (particularly ASM) and expand on the therapeutic potential of T2R agonists in treatment of asthma.


Asunto(s)
Pulmón/metabolismo , Miocitos del Músculo Liso/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Gusto/fisiología , Animales , Antiasmáticos/administración & dosificación , Asma/tratamiento farmacológico , Asma/metabolismo , Humanos , Pulmón/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Gusto/efectos de los fármacos
5.
Arch Biochem Biophys ; 663: 109-119, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30629957

RESUMEN

Mitochondria are important for airway smooth muscle physiology due to their diverse yet interconnected roles in calcium handling, redox regulation, and cellular bioenergetics. Increasing evidence indicates that mitochondria dysfunction is intimately associated with airway diseases such as asthma, IPF and COPD. In these pathological conditions, increased mitochondrial ROS, altered bioenergetics profiles, and calcium mishandling contribute collectively to changes in cellular signaling, gene expression, and ultimately changes in airway smooth muscle contractile/proliferative properties. Therefore, understanding the basic features of airway smooth muscle mitochondria and their functional contribution to airway biology and pathology are key to developing novel therapeutics for airway diseases. This review summarizes the recent findings of airway smooth muscle mitochondria focusing on calcium homeostasis and redox regulation, two key determinants of physiological and pathological functions of airway smooth muscle.


Asunto(s)
Bronquios/fisiología , Bronquios/fisiopatología , Enfermedades Pulmonares/fisiopatología , Mitocondrias Musculares/fisiología , Músculo Liso/fisiología , Músculo Liso/fisiopatología , Animales , Calcio/metabolismo , Homeostasis , Humanos
6.
Arterioscler Thromb Vasc Biol ; 34(12): 2644-50, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25278289

RESUMEN

OBJECTIVE: Black individuals are at an increased risk of myocardial infarction and stroke, 2 vascular diseases with strong thrombotic components. Platelet activation is a key step in platelet clot formation leading to myocardial infarction and stroke, and recent work supports a racial difference in platelet aggregation through the thrombin protease-activated receptors (PARs). The underlying mechanism for this racial difference, however, has not been established. Determining where in the signaling cascade these racial differences emerge will aid in understanding why individuals of differing racial ancestry may possess an inherent difference in their responsiveness to antiplatelet therapies. APPROACH AND RESULTS: Washed human platelets from black volunteers were hyperaggregable in response to PAR4-mediated platelet stimulation compared with whites. Interestingly, the racial difference in PAR4-mediated platelet aggregation persisted in platelets treated ex vivo with aspirin and 2MeSAMP (2-methylthioadenosine 5'-monophosphate triethylammonium salt hydrate), suggesting that the racial difference is independent of secondary feedback. Furthermore, stimulation of platelets from black donors with PAR4-activating peptide showed a potentiated level of activation through the Gq pathway compared with platelets from white donors. Differences in signaling included increased Ca(2+) mobilization, Rap1 (Ras-related protein 1) activation, and integrin αIIbß3 activation with no observed difference in platelet protein expression between the groups tested. CONCLUSIONS: Our study is the first to demonstrate that the Gq pathway is differentially regulated by race after PAR4 stimulation in human platelets. Furthermore, the racial difference in PAR4-mediated platelet aggregation persisted in the presence of cyclooxygenase and P2Y12 receptor dual inhibition, suggesting that current antiplatelet therapy may provide less protection to blacks than whites.


Asunto(s)
Población Negra , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/sangre , Activación Plaquetaria/fisiología , Receptores de Trombina/sangre , Población Blanca , Adulto , Señalización del Calcio , Inhibidores de la Ciclooxigenasa/farmacología , Femenino , Humanos , Masculino , Activación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/fisiología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Prostaglandina-Endoperóxido Sintasas/sangre , Proteína Quinasa C/sangre , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y12/sangre , Complejo Shelterina , Transducción de Señal , Proteínas de Unión a Telómeros/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA