Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biosystems ; 225: 104847, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36758718

RESUMEN

Root growth and their interactions can provide valuable information for the development of asynchronous logic systems. Here, maize root behavior due to positive gravitropism and nutritropism is evaluated as three-inputs-three-outputs logical gates. Using plant roots as the element for unconventional computing, the Boolean functions of each root tropism were constructed through arithmetic-logical operations. One gravity gate (rGG) and two nutrient gates (rNG1 and rNG2) were fabricated using additive manufacturing. The rGG platform was oriented with roots directly pulled down by gravity which computes (x, y, z) = (xz + yz, x + y¯z+yz¯, xy + yz), whereas specific output channels in rNG1 and rNG2 were fertigated with high phosphorus concentration resulting in (x, y, z) = (x + y + z, xy + xz, xyz) for rNG1 and (x, y, z) = (xyz, xy¯z+xyz¯, x + y + z) for rNG2. For rGG, rNG1, and rNG2, the symbols x, y, and z pertain to "root presence" in the related channel, whereas top bar on the symbols indicates "root absence". Anatomical traits of roots were evaluated to assess possible differences in vascular tissues due to gravitropic and nutritropic responses. Overall, maize primary roots showed prominent positive gravitropism and nutritropism, and the roots that were most attracted by gravitational or nutritional stimuli showed an increase in the diameter of phloem and xylem. The logic exhibited by roots was dependent on the gravitropic and nutritropic stimuli to which they were exposed in the different logic gates. The responsiveness of maize roots to environmental stimuli such as gravity and nutrients provided valuable information to be used in computational bioelectronics.


Asunto(s)
Gravitropismo , Zea mays , Gravitropismo/fisiología , Raíces de Plantas
2.
Bioresour Technol ; 369: 128256, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36343780

RESUMEN

The increase in worldwide demand for energy is driven by the rapid increase in population and exponential economic development. This resulted in the fast depletion of fossil fuel supplies and unprecedented levels of greenhouse gas in the atmosphere. To valorize biomass into different bioproducts, one of the popular and carbon-neutral alternatives is biorefineries. This system is an appropriate technology in the circular economy model. Various research highlighted the role of biorefineries as a centerpiece in the carbon-neutral ecosystem of technologies of the circular economy model. To fully realize this, various improvements and challenges need to be addressed. This paper presents a critical and timely review of the challenges and future direction of biorefineries as an alternative carbon-neutral energy source.


Asunto(s)
Ecosistema , Gases de Efecto Invernadero , Biomasa , Tecnología , Combustibles Fósiles , Biocombustibles , Carbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA