Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 5171, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33057002

RESUMEN

Excitatory and inhibitory neurons are connected into microcircuits that generate circuit output. Central in the hippocampal CA3 microcircuit is the mossy fiber (MF) synapse, which provides powerful direct excitatory input and indirect feedforward inhibition to CA3 pyramidal neurons. Here, we dissect its cell-surface protein (CSP) composition to discover novel regulators of MF synaptic connectivity. Proteomic profiling of isolated MF synaptosomes uncovers a rich CSP composition, including many CSPs without synaptic function and several that are uncharacterized. Cell-surface interactome screening identifies IgSF8 as a neuronal receptor enriched in the MF pathway. Presynaptic Igsf8 deletion impairs MF synaptic architecture and robustly decreases the density of bouton filopodia that provide feedforward inhibition. Consequently, IgSF8 loss impairs excitation/inhibition balance and increases excitability of CA3 pyramidal neurons. Our results provide insight into the CSP landscape and interactome of a specific excitatory synapse and reveal IgSF8 as a critical regulator of CA3 microcircuit connectivity and function.


Asunto(s)
Región CA3 Hipocampal/fisiología , Proteínas Portadoras/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Proteínas de la Membrana/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Células Piramidales/fisiología , Animales , Proteínas Portadoras/genética , Células Cultivadas , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Cultivo Primario de Células , Proteómica , Ratas , Sinaptosomas/metabolismo
2.
Neuron ; 100(1): 201-215.e9, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30290982

RESUMEN

Pyramidal neuron dendrites integrate synaptic input from multiple partners. Different inputs converging on the same dendrite have distinct structural and functional features, but the molecular mechanisms organizing input-specific properties are poorly understood. We identify the orphan receptor GPR158 as a binding partner for the heparan sulfate proteoglycan (HSPG) glypican 4 (GPC4). GPC4 is enriched on hippocampal granule cell axons (mossy fibers), whereas postsynaptic GPR158 is restricted to the proximal segment of CA3 apical dendrites receiving mossy fiber input. GPR158-induced presynaptic differentiation in contacting axons requires cell-surface GPC4 and the co-receptor LAR. Loss of GPR158 increases mossy fiber synapse density but disrupts bouton morphology, impairs ultrastructural organization of active zone and postsynaptic density, and reduces synaptic strength of this connection, while adjacent inputs on the same dendrite are unaffected. Our work identifies an input-specific HSPG-GPR158 interaction that selectively organizes synaptic architecture and function of developing mossy fiber-CA3 synapses in the hippocampus.


Asunto(s)
Región CA3 Hipocampal/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sinapsis/metabolismo , Animales , Región CA3 Hipocampal/embriología , Células HEK293 , Humanos , Ratones , Fibras Musgosas del Hipocampo/embriología , Neurogénesis/fisiología , Células Piramidales/metabolismo , Ratas , Ratas Long-Evans , Transmisión Sináptica/fisiología
3.
Cell Rep ; 25(1): 130-145.e5, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30282023

RESUMEN

Establishing synaptic contacts between neurons is paramount for nervous system function. This process involves transsynaptic interactions between a host of cell adhesion molecules that act in cooperation with the proteins of the extracellular matrix to specify unique physiological properties of individual synaptic connections. However, understanding of the molecular mechanisms that generate functional diversity in an input-specific fashion is limited. In this study, we identify that major components of the extracellular matrix proteins present in the synaptic cleft-members of the heparan sulfate proteoglycan (HSPG) family-associate with the GPR158/179 group of orphan receptors. Using the mammalian retina as a model system, we demonstrate that the HSPG member Pikachurin, released by photoreceptors, recruits a key post-synaptic signaling complex of downstream ON-bipolar neurons in coordination with the pre-synaptic dystroglycan glycoprotein complex. We further demonstrate that this transsynaptic assembly plays an essential role in synaptic transmission of photoreceptor signals.


Asunto(s)
Proteínas Portadoras/metabolismo , Distroglicanos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Fotorreceptoras/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Unión Proteica , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
4.
Front Mol Neurosci ; 11: 14, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29434536

RESUMEN

Neural circuits consist of distinct neuronal cell types connected in specific patterns. The specificity of these connections is achieved in a series of sequential developmental steps that involve the targeting of neurites, the identification of synaptic partners, and the formation of specific types of synapses. Cell-surface proteins play a critical role in each of these steps. The heparan sulfate proteoglycan (HSPG) family of cell-surface proteins is emerging as a key regulator of connectivity. HSPGs are expressed throughout brain development and play important roles in axon guidance, synapse development and synapse function. New insights indicate that neuronal cell types express unique combinations of HSPGs and HS-modifying enzymes. Furthermore, HSPGs interact with cell type-specific binding partners to mediate synapse development. This suggests that cell type-specific repertoires of HSPGs and specific patterns of HS modifications on the cell surface are required for the development of specific synaptic connections. Genome-wide association studies have linked these proteins to neurodevelopmental and neuropsychiatric diseases. Thus, HSPGs play an important role in the development of specific synaptic connectivity patterns important for neural circuit function, and their dysfunction may be involved in the development of brain disorders.

5.
Dev Cell ; 43(3): 261-263, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-29112849

RESUMEN

Glial cells shape neural circuits by secreting cues that contribute to the spatiotemporal control of connectivity. A new study in Neuron from Farhy-Tselnicker et al. (2017) shows that the astrocyte-secreted heparan sulfate proteoglycan GPC4 acts on presynaptic terminals to indirectly regulate AMPA receptor clustering and active synapse formation.


Asunto(s)
Astrocitos/metabolismo , Hipocampo/metabolismo , Motivación/fisiología , Terminales Presinápticos/metabolismo , Sinapsis/metabolismo , Animales , Humanos , Neuronas/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(6): 1874-9, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25624497

RESUMEN

Leukocyte common antigen-related receptor protein tyrosine phosphatases--comprising LAR, PTPδ, and PTPσ--are synaptic adhesion molecules that organize synapse development. Here, we identify glypican 4 (GPC-4) as a ligand for PTPσ. GPC-4 showed strong (nanomolar) affinity and heparan sulfate (HS)-dependent interaction with the Ig domains of PTPσ. PTPσ bound only to proteolytically cleaved GPC-4 and formed additional complex with leucine-rich repeat transmembrane protein 4 (LRRTM4) in rat brains. Moreover, single knockdown (KD) of PTPσ, but not LAR, in cultured neurons significantly reduced the synaptogenic activity of LRRTM4, a postsynaptic ligand of GPC-4, in heterologous synapse-formation assays. Finally, PTPσ KD dramatically decreased both the frequency and amplitude of excitatory synaptic transmission. This effect was reversed by wild-type PTPσ, but not by a HS-binding-defective PTPσ mutant. Our results collectively suggest that presynaptic PTPσ, together with GPC-4, acts in a HS-dependent manner to maintain excitatory synapse development and function.


Asunto(s)
Encéfalo/metabolismo , Glipicanos/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Transmisión Sináptica/fisiología , Análisis de Varianza , Animales , Western Blotting , Cromatografía de Afinidad , Cromatografía Líquida de Alta Presión , Técnicas de Silenciamiento del Gen , Vectores Genéticos/genética , Heparitina Sulfato/metabolismo , Inmunohistoquímica , Inmunoprecipitación , Hibridación in Situ , Proteínas Repetidas Ricas en Leucina , Espectrometría de Masas , Oligonucleótidos/genética , Terminales Presinápticos/fisiología , Ratas , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética
7.
Neuron ; 79(4): 696-711, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23911103

RESUMEN

Leucine-rich repeat (LRR) proteins have recently been identified as important regulators of synapse development and function, but for many LRR proteins the ligand-receptor interactions are not known. Here we identify the heparan sulfate (HS) proteoglycan glypican as a receptor for LRRTM4 using an unbiased proteomics-based approach. Glypican binds LRRTM4, but not LRRTM2, in an HS-dependent manner. Glypican 4 (GPC4) and LRRTM4 localize to the pre- and postsynaptic membranes of excitatory synapses, respectively. Consistent with a trans-synaptic interaction, LRRTM4 triggers GPC4 clustering in contacting axons and GPC4 induces clustering of LRRTM4 in contacting dendrites in an HS-dependent manner. LRRTM4 positively regulates excitatory synapse development in cultured neurons and in vivo, and the synaptogenic activity of LRRTM4 requires the presence of HS on the neuronal surface. Our results identify glypican as an LRRTM4 receptor and indicate that a trans-synaptic glypican-LRRTM4 interaction regulates excitatory synapse development.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Glipicanos/metabolismo , Hipocampo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Glipicanos/genética , Hipocampo/citología , Hipocampo/embriología , Hipocampo/crecimiento & desarrollo , Humanos , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Transgénicos , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Embarazo , Unión Proteica/genética , Isoformas de Proteínas/metabolismo , Ratas , Ratas Long-Evans , Sinapsis/metabolismo
8.
PLoS One ; 8(6): e68229, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23826381

RESUMEN

Glioblastomas are the most frequent and aggressive intracranial neoplasms in humans, and despite advances and the introduction of the alkylating agent temozolomide in therapy have improved patient survival, resistance mechanisms limit benefits. Recent studies support that glioblastoma stem-like cells (GSCs), a cell subpopulation within the tumour, are involved in the aberrant expansion and therapy resistance properties of glioblastomas, through still unclear mechanisms. Emerging evidence suggests that sphingosine-1-phosphate (S1P) a potent onco-promoter able to act as extracellular signal, favours malignant and chemoresistance properties in GSCs. Notwithstanding, the origin of S1P in the GSC environment remains unknown. We investigated S1P metabolism, release, and role in cell survival properties of GSCs isolated from either U87-MG cell line or a primary culture of human glioblastoma. We show that both GSC models, grown as neurospheres and expressing GSC markers, are resistant to temozolomide, despite not expressing the DNA repair protein MGMT, a major contributor to temozolomide-resistance. Pulse experiments with labelled sphingosine revealed that both GSC types are able to rapidly phosphorylate the long-chain base, and that the newly produced S1P is efficiently degraded. Of relevance, we found that S1P was present in GSC extracellular medium, its level being significantly higher than in U87-MG cells, and that the extracellular/intracellular ratio of S1P was about ten-fold higher in GSCs. The activity of sphingosine kinases was undetectable in GSC media, suggesting that mechanisms of S1P transport to the extracellular environment are constitutive in GSCs. In addition we found that an inhibitor of S1P biosynthesis made GSCs sensitive to temozolomide (TMZ), and that exogenous S1P reverted this effect, thus involving extracellular S1P as a GSC survival signal in TMZ resistance. Altogether our data implicate for the first time GSCs as a pivotal source of extracellular S1P, which might act as an autocrine/paracrine signal contributing to their malignant properties.


Asunto(s)
Neoplasias Encefálicas/patología , Espacio Extracelular/metabolismo , Glioblastoma/patología , Lisofosfolípidos/farmacología , Células Madre Neoplásicas/patología , Esfingosina/análogos & derivados , Línea Celular Tumoral , Separación Celular , Supervivencia Celular/efectos de los fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Espacio Extracelular/efectos de los fármacos , Glioblastoma/enzimología , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Lisofosfolípidos/biosíntesis , Modelos Biológicos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingosina/biosíntesis , Esfingosina/farmacología , Temozolomida
9.
PLoS One ; 8(12): e85519, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24392018

RESUMEN

The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn(2+) homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn(2+) in ∆spf1 cells and an increase following it's overexpression. In agreement with the observed loss of luminal Mn(2+) we could observe concurrent reduction in many Mn(2+)-related process in the ER lumen. Conversely, cytosolic Mn(2+)-dependent processes were increased. Together, these data support a role for Spf1p in Mn(2+) transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn(2+)-dependent neurological disorders.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Retículo Endoplásmico/metabolismo , Manganeso/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/metabolismo , Transporte Biológico , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Homeostasis , Humanos , Microsomas/metabolismo , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA