Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(27): 35732-35739, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38924757

RESUMEN

Mixed components of formamidinium(FA) and cesium (Cs)-based perovskite solar cells are the most hopeful for commercialization owing to their excellent operational and phase stabilities, especially for devices with inverted structure. The nonradiative recombination of carriers can be effectively suppressed through interface optimization, therefore, the performance of devices can be improved. Notably, the buried interface emerges as critical aspects such as charge transport, charge recombination kinetics, and morphology of perovskite films. This study focuses on a straightforward yet effective approach to overcome buried interface challenges between organic polymers (poly(-triarylamine) (PTAA) and FACs-based perovskite films. The PTAA substrate is pretreated with a Lewis base known as 2-butynoic acid (BA) with a C═O functional group. First, it can be an interfacial buffering layer, harmonizing stress mismatch between the perovskite and PTAA layers, consequently optimizing crystallization and improving perovskite film quality. Second, Pb2+ defect can be passivated at the buried interface of the perovskite film through binding with the C═O group of the BA molecule. This dual-function strategy leads to a substantial enhancement in both photoelectric conversion efficiency (PCE) and stability of devices. Finally, the PCE of the device-modified buried interface with BA reaches an impressive 23.33%. Furthermore, unencapsulated devices with BA treatment maintain approximately 94% of their initial efficiency after aging at maximum power point tracking for 1000 h.

2.
ACS Appl Mater Interfaces ; 16(15): 19247-19253, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38591143

RESUMEN

Two-dimensional (2D) transitional metal dichalcogenides (TMDs) have garnered significant attention due to their potential for next-generation electronics, which require device scaling. However, the performance of TMD-based field-effect transistors (FETs) is greatly limited by the contact resistance. This study develops an effective strategy to optimize the contact resistance of WSe2 FETs by combining contact doping and 2D metallic electrode materials. The contact regions were doped using a laser, and the metallic TaSe2 flakes were stacked on doped WSe2 as electrodes. Doping the contact areas decreases the depletion width, while introducing the TaSe2 contact results in a lower Schottky barrier. This method significantly improves the electrical performance of the WSe2 FETs. The doped WSe2/TaSe2 contact exhibits an ultralow Schottky barrier height of 65 meV and a contact resistance of 11 kΩ·µm, which is a 50-fold reduction compared to the conventional Cr/Au contact. Our method offers a way on fabricating high-performance 2D FETs.

3.
Adv Sci (Weinh) ; 11(22): e2400275, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38504472

RESUMEN

Energy loss in perovskite grain boundaries (GBs) is a primary limitation toward high-efficiency perovskite solar cells (PSCs). Two critical strategies to address this issue are high-quality crystallization and passivation of GBs. However, the established methods are generally carried out discretely due to the complicated mechanisms of grain growth and defect formation. In this study, a combined method is proposed by introducing 3,4,5-Trifluoroaniline iodide (TFAI) into the perovskite precursor. The TFAI triggers the union of nano-sized colloids into microclusters and facilitates the complete phase transition of α-FAPbI3 at room temperature. The controlled chemical reactivity and strong steric hindrance effect enable the fixed location of TFAI and suppress defects at GBs. This combination of well-crystallized perovskite grains and effectively passivated GBs leads to an improvement in the open circuit voltage (Voc) of PSCs from 1.08 V to 1.17 V, which is one of the highest recorded Voc without interface modification. The TFAI-incorporated device achieved a champion PCE of 24.81%. The device maintained a steady power output near its maximum power output point, showing almost no decay over 280 h testing without pre-processing.

4.
ACS Appl Mater Interfaces ; 16(12): 15446-15456, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38481056

RESUMEN

Recently, various transition metal dichalcogenides (TMDs)/Ga2O3 heterostructures have emerged as excellent candidates for the development of broadband photodetection, exhibiting various merits such as broadband optical absorption, efficient interlayer carrier transfer, a relatively simple fabrication process, and potential for flexibility. In this work, vertically stacked MoSe2/Ga2O3, WS2/Ga2O3, and WSe2/Ga2O3 heterostructures were experimentally synthesized, all exhibiting broadband light absorption, spanning at least from 200 to 800 nm. The absorption coefficients of these TMDs/Ga2O3 heterostructures are significantly improved compared to those of individual Ga2O3 films. The superior performance can be attributed to the type-I band alignment and efficient interlayer carrier transfer, which result from various band offsets along with the different doping conditions of the TMD layers, leading to distinct photoluminescence (PL) emission properties. Through a detailed analysis of the excitation-power-dependent PL spectra, we offer an in-depth discussion of the interlayer carrier transfer mechanism in the TMDs/Ga2O3 heterostructures. Regarding interlayer coupling effects, the shift of the EF of TMD layers plays a crucial role in modulating their trion emission properties. These findings suggest that these three TMDs/Ga2O3 heterostructures have great potential in broadband photodetection, and our in-depth physical mechanism analysis lays a solid foundation for a new device design.

5.
Nanotechnology ; 35(4)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37669634

RESUMEN

Two-dimensional transition metal dichalcogenides (TMDs), as flexible and stretchable materials, have attracted considerable attention in the field of novel flexible electronics due to their excellent mechanical, optical, and electronic properties. Among the various TMD materials, atomically thin MoS2has become the most widely used material due to its advantageous properties, such as its adjustable bandgap, excellent performance, and ease of preparation. In this work, we demonstrated the practicality of a stacked wafer-scale two-layer MoS2film obtained by transferring multiple single-layer films grown using chemical vapor deposition. The MoS2field-effect transistor cell had a top-gated device structure with a (PI) film as the substrate, which exhibited a high on/off ratio (108), large average mobility (∼8.56 cm2V-1s-1), and exceptional uniformity. Furthermore, a range of flexible integrated logic devices, including inverters, NOR gates, and NAND gates, were successfully implemented via traditional lithography. These results highlight the immense potential of TMD materials, particularly MoS2, in enabling advanced flexible electronic and optoelectronic devices, which pave the way for transformative applications in future-generation electronics.

6.
Adv Mater ; 35(46): e2302298, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37578639

RESUMEN

Perovskite single-crystal redissolution (PSCR) strategy is highly desired for efficient formamidinium lead triiodide (FAPbI3 ) perovskite photovoltaics with enhanced phase purity, improved film quality, low trap-state density, and good stability. However, the phase transition and crystallization dynamics of FAPbI3 remain unclear in the PSCR process compared to the conventional fabrication from the mixing of precursor materials. In this work, a green-solvent-assisted (GSA) method is employed to synthesize centimeter-sized α-FAPbI3 single crystals, which serve as the high-purity precursor to fabricate perovskite films. The α-FAPbI3 PSCR strategy facilitates direct α-phase formation and inhibits the complex intermediate phases monitored by in situ grazing-incidence wide-angle X-ray scattering. Moreover, the α-phase stability is prolonged due to the relaxation of the residual lattice strain through the isotropic orientation phase growth. Consequently, the GSA-assisted PSCR strategy effectively promotes crystallization and suppresses non-radiative recombination in perovskite solar cells, which boosts the device efficiency from 22.08% to 23.92% with significantly enhanced open circuit voltage. These findings provide deeper insight into the PSCR process in terms of its efficacy in phase formation and lattice strain release. The green low-cost solvent may also offer a new and ideal solvent candidate for large-scale production of perovskite photovoltaics.

7.
RSC Adv ; 13(26): 18099-18107, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37323440

RESUMEN

Interlayer excitons (ILEs) in the van der Waals (vdW) heterostructures of type-II band alignment transition metal dichalcogenides (TMDCs) have attracted significant interest owing to their unique exciton properties and potential in quantum information applications. However, the new dimension that emerges with the stacking of structures with a twist angle leads to a more complex fine structure of ILEs, presenting both an opportunity and a challenge for the regulation of the interlayer excitons. In this study, we report the evolution of interlayer excitons with the twist angle in the WSe2/WS2 heterostructure and identify the direct (indirect) interlayer excitons by combining photoluminescence (PL) and density functional theory (DFT) calculations. Two interlayer excitons with opposite circular polarization assigned to the different transition paths of K-K and Q-K were observed. The nature of the direct (indirect) interlayer exciton was confirmed by circular polarization PL measurement, excitation power-dependent PL measurement and DFT calculations. Furthermore, by applying an external electric field to regulate the band structure of the WSe2/WS2 heterostructure and control the transition path of the interlayer excitons, we could successfully realize the regulation of interlayer exciton emission. This study provides more evidence for the twist-angle-based control of heterostructure properties.

8.
RSC Adv ; 13(12): 7780-7788, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36909766

RESUMEN

Two-dimensional InSe has been considered as a promising candidate for novel optoelectronic devices owing to large electron mobility and a near-infrared optical band gap. However, its widespread applications suffer from environmental instability. A lot of theoretical studies on the degradation mechanism of InSe have been reported whereas the experimental proofs are few. Meanwhile, the role of the extrinsic environment is still obscure during the degradation. As a common technique of studying the degradation mechanism of 2D materials, laser irradiation exhibits many unique advantages, such as being fast, convenient, and offering in situ compatibility. Here, we have developed a laser-treated method, which involves performing repeated measurements at the same point while monitoring the evolution of the resulting PL, to systematically study the photo-induced degradation process of InSe. Interestingly, we observe different evolution behavior of PL intensity under weak irradiation and strong irradiation. Our experimental results indicate the vacancy passivation and degrading effect simultaneously occurring in InSe under a weak laser irradiation, resulting in the PL increasing first and then decreasing during the measurement. Meanwhile we also notice that the passivation has a stronger effect on the PL than the degrading effect of weak oxidation. In contrast, under a strong laser irradiation, the InSe suffers serious destruction caused by excess heating and intense oxidation. This leads to a direct decrease of PL and corresponding oxidative products. Our work provides a reliable experimental supplement to the photo oxidation study of InSe and opens up a new avenue to regulate the PL of InSe.

9.
Nanomaterials (Basel) ; 13(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36903711

RESUMEN

Two-dimensional (2D) materials and their van der Waals stacked heterostructures (vdWH) are becoming the rising and glowing candidates in the emerging flexible nanoelectronics and optoelectronic industry. Strain engineering proves to be an efficient way to modulate the band structure of 2D materials and their vdWH, which will broaden understanding and practical applications of the material. Therefore, how to apply desired strain to 2D materials and their vdWH is of great importance to get the intrinsic understanding of 2D materials and their vdWH with strain modulation. Here, systematic and comparative studies of strain engineering on monolayer WSe2 and graphene/WSe2 heterostructure are studied by photoluminescence (PL) measurements under uniaxial tensile strain. It is found that contacts between graphene and WSe2 interface are improved, and the residual strain is relieved through the pre-strain process, which thus results in the comparable shift rate of the neutral exciton (A) and trion (AT) of monolayer WSe2 and graphene/WSe2 heterostructure under the subsequent strain release process. Furthermore, the PL quenching occurred when the strain is restored to the original position also indicates the pre-strain process to 2D materials, and their vdWH is important and necessary for improving the interface contacts and reducing the residual strain. Thus, the intrinsic response of the 2D material and their vdWH under strain can be obtained after the pre-strain treatment. These findings provide a quick, fast and efficient way to apply desired strain and also have important significance in guiding the use of 2D materials and their vdWH in the field of flexible and wearable devices.

10.
Discov Nano ; 18(1): 13, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36795193

RESUMEN

Large-area, continuous monolayer WS2 exhibits great potential for future micro-nanodevice applications due to its special electrical properties and mechanical flexibility. In this work, the front opening quartz boat is used to increase the amount of sulfur (S) vapor under the sapphire substrate, which is critical for achieving large-area films during the chemical vapor deposition processes. COMSOL simulations reveal that the front opening quartz boat will significantly introduce gas distribute under the sapphire substrate. Moreover, the gas velocity and height of substrate away from the tube bottom will also affect the substrate temperature. By carefully optimizing the gas velocity, temperature, and height of substrate away from the tube bottom, a large-scale continues monolayered WS2 film was achieved. Field-effect transistor based on the as-grown monolayer WS2 showed a mobility of 3.76 cm2V-1 s-1 and ON/OFF ratio of 106. In addition, a flexible WS2/PEN strain sensor with a gauge factor of 306 was fabricated, showing great potential for applications in wearable biosensors, health monitoring, and human-computer interaction.

11.
Adv Sci (Weinh) ; 10(5): e2205879, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36494090

RESUMEN

Realization of remote wearable health monitoring (RWHM) technology for the flexible photodiodes is highly desirable in remote-sensing healthcare systems used in space stations, oceans, and forecasting warning, which demands high external quantum efficiency (EQE) and detectivity in NIR region. Traditional inorganic photodetectors (PDs) are mechanically rigid and expensive while the widely reported solution-processed mixed tin-lead (MSP) perovskite photodetectors (PPDs) exhibit a trade-off between EQE and detectivity in the NIR region. Herein, a novel functional passivating antioxidant (FPA) strategy has been introduced for the first time to simultaneously improve crystallization, restrain Sn2+ oxidization, and reduce defects in MSP perovskite films by multiple interactions between thiophene-2-carbohydrazide (TAH) molecules and cations/anions in MSP perovskite. The resultant solution-processed rigid mixed Sn-Pb PPD simultaneously achieves high EQE (75.4% at 840 nm), detectivity (1.8 × 1012 Jones at 840 nm), ultrafast response time (trise /tfall = 94 ns/97 ns), and improved stability. This work also highlights the demonstration of the first flexible photodiode using MSP perovskite and FPA strategy with remarkably high EQE (75% at 840 nm), and operational stability. Most importantly, the RWHM is implemented for the first time in the PIN MSP perovskite photodiodes to remotely monitor the heart rate of humans at rest and after-run conditions.

12.
Small ; 18(45): e2203882, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36168115

RESUMEN

Molecular ferroelectrics (MFs) have been proven to demonstrate excellent properties even comparable to those of inorganic counterparts usually with heavy metals. However, the validation of their device applications is still at the infant stage. The polycrystalline feature of conventionally obtained MF films, the patterning challenges for microelectronics and the brittleness of crystalline films significantly hinder their development for organic integrated circuits, as well as emerging flexible electronics. Here, a large-area flexible memory array is demonstrated of oriented molecular ferroelectric single crystals (MFSCs) with nearly saturated polarization. Highly-uniform MFSC arrays are  prepared on large-scale substrates including Si wafers and flexible substrates using an asymmetric-wetting and microgroove-assisted coating (AWMAC) strategy. Resultant flexible memory arrays exhibit excellent nonvolatile memory properties with a low-operating voltage of <5 V, i.e., nearly saturated ferroelectric polarization (6.5 µC cm-2 ), and long bending endurance (>103 ) under various bending radii. These results may open an avenue for scalable flexible MF electronics with high performance.

13.
Adv Mater ; 34(48): e2202472, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35728050

RESUMEN

2D semiconductors, such as molybdenum disulfide (MoS2 ), have attracted tremendous attention in constructing advanced monolithic integrated circuits (ICs) for future flexible and energy-efficient electronics. However, the development of large-scale ICs based on 2D materials is still in its early stage, mainly due to the non-uniformity of the individual devices and little investigation of device and circuit-level optimization. Herein, a 4-inch high-quality monolayer MoS2 film is successfully synthesized, which is then used to fabricate top-gated (TG) MoS2 field-effect transistors with wafer-scale uniformity. Some basic circuits such as static random access memory and ring oscillators are examined. A pass-transistor logic configuration based on pseudo-NMOS is then employed to design more complex MoS2 logic circuits, which are successfully fabricated with proper logic functions tested. These preliminary integration efforts show the promising potential of wafer-scale 2D semiconductors for application in complex ICs.

14.
Adv Mater ; 34(18): e2103527, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35129854

RESUMEN

Resonant emission in photonic structures is very useful to construct all-photonic circuits for optical interconnects and quantum computing. Optical generation of most resonant-emitting modes in photonic structures is obtained by coherent pumping rather than incoherent illumination. Particularly, the development of white-light- or even solar-powered on-chip light sources remains challenging but is very attractive in view of the much facile availability of these incoherent excitation sources. Here, net resonant emission from a monolayer semiconductor is demonstrated under simulated solar illumination by a white-light-emitting diode. The device is formed by embedding a 2D gain medium into a planar microcavity on a silicon wafer, which is compatible with the prevailing on-chip photonic technology. Coherent and white-light excitation sources are, respectively, selected for optical pumping, where the output light in two cases exhibits well-consistent resonant wavelength, linewidth, polarization, location, and Gaussian-beam profile. The fundamental TEM00 mode behaves as a doublet emission, resulting from anisotropy-induced non-degenerate states with orthogonal polarizations. The extraordinary spectral flipping is attributed to the competitive interplay of resonant absorption and emission. This work paves a way toward white-light or solar-powered state-of-the-art photonic applications at the chip scale.

15.
Small Methods ; 6(4): e2101509, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35170861

RESUMEN

The emergence of near-eye displays, such as head-mounted displays, is triggering a requirement for highly enhanced display resolution. High-resolution micro-displays with micro-organic light-emitting diodes (micro-OLEDs) can be a preferential candidate, owing to the mature industrialization of OLEDs along with the advantages of flexibility, light weight, and ease of processing. However, micro-OLEDs with pixel sizes down to micrometers are difficult to be achieved using conventional techniques such as fine metal mask evaporation and lithography. Here, a solution-processing approach to pattern organic semiconductors (OSCs) for micro-OLED arrays with the assistance of templated dewetting is demonstrated. Solvents containing organic functional materials are dewetted on the surface with hydrophobic/hydrophilic patterns to form ordered droplet arrays using dip-coating. Subsequently, patterned OSC films are produced by effectively controlling solvent evaporation. Micro-OLED arrays with a pixel size down to 1 µm are successfully fabricated by further deposition of emitting/electron transport layers and top electrodes. This approach can open an avenue for low-cost manufacturing of flexible and high-resolution micro-displays.


Asunto(s)
Metales , Semiconductores , Electrodos , Diseño de Equipo
16.
ACS Nano ; 15(5): 8397-8406, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33881826

RESUMEN

Monolayer transition metal dichalcogenide (TMD) alloys have emerged as a unique material system for promising applications in electronics, optoelectronics, and spintronics due to their tunable electronic structures, effective masses of carriers, and valley polarization with various alloy compositions. Although spin-orbit engineering has been extensively studied in monolayer TMD alloys, the valley Zeeman effect in these alloys still remains largely unexplored. Here we demonstrate the enhanced valley magnetic response in Mo0.5W0.5Se2 alloy monolayers and Mo0.5W0.5Se2/WS2 heterostructures probed by magneto-photoluminescence spectroscopy. The large g factors of negatively charged excitons (trions) of Mo0.5W0.5Se2 have been extracted for both pure Mo0.5W0.5Se2 monolayers and Mo0.5W0.5Se2/WS2 heterostructures, which are attributed to the significant impact of doping-induced strong many-body Coulomb interactions on trion emissions under an out-of-plane magnetic field. Moreover, compared with the monolayer Mo0.5W0.5Se2, the slightly reduced valley Zeeman splitting in Mo0.5W0.5Se2/WS2 is a consequence of the weakened exchange interaction arising from p-doping in Mo0.5W0.5Se2 via interlayer charge transfer between Mo0.5W0.5Se2 and WS2. Such interlayer charge transfer further evidences the formation of type-II band alignment, in agreement with the density functional theory calculations. Our findings give insights into the spin-valley and interlayer coupling effects in monolayer TMD alloys and their heterostructures, which are essential to develop valleytronic applications based on the emerging family of TMD alloys.

17.
Nanoscale ; 12(46): 23732-23739, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33231235

RESUMEN

Vertical van der Waals heterostructures have aroused great attention for their promising application in next-generation nanoelectronic and optoelectronic devices. The dielectric screening effect plays a key role in the properties of two-dimensional (2D) heterostructures. Here, we studied the dielectric screening effects on the excitonic properties and critical points (CPs) of the WS2/MoS2 heterostructure using spectroscopic ellipsometry (SE). Owing to the type-II band alignment of the WS2/MoS2 heterostructure, charged carriers spatially separated and created an interlayer exciton, and the transition energy and binding energy have been accurately found to be 1.58 ± 0.050 eV and 431.39 ± 127.818 meV by SE, respectively. We found that stacking the WS2/MoS2 vertical heterostructure increases the effective dielectric screening compared with the monolayer counterparts. The increased effective dielectric screening in the WS2/MoS2 heterostructure weakens the long-range Coulomb force between electrons and holes. Consequently, the quasi-particle band gap and the exciton binding energies are reduced, and because of the orbital overlap, more CPs are produced in the WS2/MoS2 heterostructure in the high photon energy range. Our results not only shed light on the interpretation of recent first-principles studies, but also provide important physical support for improving the performance of heterostructure-based optoelectronic devices with tunable functionalities.

18.
Adv Mater ; 32(45): e2003746, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33002238

RESUMEN

Metallic layered transition metal dichalcogenides (TMDs) host collective many-body interactions, including the competing superconducting and charge density wave (CDW) states. Graphene is widely employed as a heteroepitaxial substrate for the growth of TMD layers and as an ohmic contact, where the graphene/TMD heterostructure is naturally formed. The presence of graphene can unpredictably influence the CDW order in 2D CDW conductors. This work reports the CDW transitions of 2H-NbSe2 layers in graphene/NbSe2 heterostructures. The evolution of Raman spectra demonstrates that the CDW phase transition temperatures (TCDW ) of NbSe2 are dramatically decreased when capped by graphene. The induced anomalous short-range CDW state is confirmed by scanning tunneling microscopy measurements. The findings propose a new criterion to determine the TCDW through monitoring the line shape of the A1g mode. Meanwhile, the 2D band is also discovered as an indicator to observe the CDW transitions. First-principles calculations imply that interfacial electron doping suppresses the CDW states by impeding the lattice distortion of 2H-NbSe2 . The extraordinary random CDW lattice suggests deep insight into the formation mechanism of many collective electronic states and possesses great potential in modulating multifunctional devices.

19.
Phys Rev Lett ; 125(15): 156802, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33095618

RESUMEN

The temperature dependence of the band gap is crucial to a semiconductor. Bulk black phosphorus is known to exhibit an anomalous behavior. Through optical spectroscopy, here we show that the temperature effect on black phosphorus band gap gradually evolves with decreasing layer number, eventually turns into a normal one in the monolayer limit, rendering a crossover from the anomalous to the normal. Meanwhile, the temperature-induced shift in optical resonance also differs with different transition indices for the same thickness sample. A comprehensive analysis reveals that the temperature-tunable interlayer coupling is responsible for the observed diverse scenario. Our study provides a key to the apprehension of the anomalous temperature behavior in certain layered semiconductors.

20.
Opt Express ; 28(15): 22135-22143, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32752480

RESUMEN

Two-dimensional van der Waals heterostructures (vdWHs) are drawing growing interest in the investigation of their valley polarization properties of localized excitons. However, most of the reported vdWHs were made by micro-mechanical peeling, limiting their large-scale production and practical applications. Furthermore, the circular polarization characters of localized excitons in WSe2/WS2 heterostructures remain elusive. Here, a bidirectional-flow physical vapor deposition technique was employed for the synthesis of the WSe2/WS2 type-II vertical heterostructures. The interfaces of such heterojunctions are sharp and clean, making the neutral excitons of the constituent layers quenched, which significantly highlights the luminescence of the local excitons. The circular polarization of localized excitons in this WSe2/WS2 heterostructure was demonstrated by circularly-polarized PL spectroscopy. The degree of the circular polarization of the localized excitons was determined as 7.17% for σ- detection and 4.78% for σ+ detection. Such local excitons play a critical role in a quantum emitter with enhanced spontaneous emission rate that could lead to the evolution of LEDs. Our observations provide valuable information for the exploration of intriguing excitonic physics and the applications of innovative local exciton devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...