Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Protoc ; 4(2): e989, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38363064

RESUMEN

Acne vulgaris (acne) effects nearly 90% of all Western teenagers, and the only pharmaceutical class of agents to treat severe forms of this skin condition are the retinoids, which are well-described teratogens. Yet about 50% of the patients receiving this class of therapeutics are women of child-bearing age, in their peak years of reproductive potential. On this basis, there is a significant unmet medical need for agents to treat severe forms of acne that do not carry this liability. As a means to assess potential agents of this type, here we describe methods for estimating the relative amount of sebum that a mouse produces based on the water retention on fur following a thorough wetting procedure. We have shown that a compound that is clinically effective in reducing sebum production demonstrates activity in this model. The method is therefore useful for evaluating therapeutic candidates for reducing sebum production, which would in turn be useful for treating acne. We have broken the entire procedure down into two phases/two protocols, as listed below. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Pre-wash wet weight measurement Basic Protocol 2: Post-wash wet-weight measurement.


Asunto(s)
Acné Vulgar , Sebo , Adolescente , Humanos , Femenino , Ratones , Animales , Masculino , Modelos Animales de Enfermedad , Acné Vulgar/tratamiento farmacológico , Retinoides/uso terapéutico , Equilibrio Hidroelectrolítico
2.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34832978

RESUMEN

A glucose-lowering medication that acts by a different mechanism than metformin, or other approved diabetes medications, can supplement monotherapies when patients fail to meet blood glucose goals. We examined the actions underlying the effects of an insulin sensitizer, tolimidone (MLR-1023) and investigated its effects on body weight. Diet-induced obesity (CD1/ICR) and type 2 diabetes (db/db) mouse models were used to study the effect of MLR-1023 on metabolic outcomes and to explore its synergy with menthol. We also examined the efficacy of MLR-1023 alone in a clinical trial (NCT02317796), as well as in combination with menthol in human adipocytes. MLR-1023 produced weight loss in humans in four weeks, and in mice fed a high-fat diet it reduced weight gain and fat mass without affecting food intake. In human adipocytes from obese donors, the upregulation of Uncoupling Protein 1, Glucose (UCP)1, adiponectin, Glucose Transporter Type 4 (GLUT4), Adipose Triglyceride Lipase (ATGL), Carnitine palmitoyltransferase 1 beta (CPT1ß), and Transient Receptor Potential Melastin (TRPM8) mRNA expression suggested the induction of thermogenesis. The TRPM8 agonist, menthol, potentiated the effect of MLR-1023 on the upregulation of genes for energy expenditure and insulin sensitivity in human adipocytes, and reduced fasting blood glucose in mice. The amplification of the thermogenic program by MLR-1023 and menthol in the absence of adrenergic activation will likely be well-tolerated, and bears investigation in a clinical trial.

3.
Mech Ageing Dev ; 184: 111150, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31574270

RESUMEN

In most species, females live longer than males. An understanding of this female longevity advantage will likely uncover novel anti-aging therapeutic targets. Here we investigated the transcriptomic responses in the hypothalamus - a key organ for somatic aging control - to the introduction of a simple aging-related molecular perturbation, i.e. GIT2 heterozygosity. Our previous work has demonstrated that GIT2 acts as a network controller of aging. A similar number of both total (1079-female, 1006-male) and gender-unique (577-female, 527-male) transcripts were significantly altered in response to GIT2 heterozygosity in early life-stage (2 month-old) mice. Despite a similar volume of transcriptomic disruption in females and males, a considerably stronger dataset coherency and functional annotation representation was observed for females. It was also evident that female mice possessed a greater resilience to pro-aging signaling pathways compared to males. Using a highly data-dependent natural language processing informatics pipeline, we identified novel functional data clusters that were connected by a coherent group of multifunctional transcripts. From these it was clear that females prioritized metabolic activity preservation compared to males to mitigate this pro-aging perturbation. These findings were corroborated by somatic metabolism analyses of living animals, demonstrating the efficacy of our new informatics pipeline.


Asunto(s)
Envejecimiento/genética , Envejecimiento/fisiología , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/fisiología , Hipotálamo/metabolismo , Animales , Análisis por Conglomerados , Biología Computacional , Femenino , Longevidad/genética , Longevidad/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN/biosíntesis , ARN/genética , Caracteres Sexuales , Transducción de Señal/genética , Transducción de Señal/fisiología , Transcriptoma
4.
J Biol Chem ; 292(27): 11508-11530, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28522608

RESUMEN

The type 1 taste receptor member 3 (T1R3) is a G protein-coupled receptor involved in sweet-taste perception. Besides the tongue, the T1R3 receptor is highly expressed in brain areas implicated in cognition, including the hippocampus and cortex. As cognitive decline is often preceded by significant metabolic or endocrinological dysfunctions regulated by the sweet-taste perception system, we hypothesized that a disruption of the sweet-taste perception in the brain could have a key role in the development of cognitive dysfunction. To assess the importance of the sweet-taste receptors in the brain, we conducted transcriptomic and proteomic analyses of cortical and hippocampal tissues isolated from T1R3 knock-out (T1R3KO) mice. The effect of an impaired sweet-taste perception system on cognition functions were examined by analyzing synaptic integrity and performing animal behavior on T1R3KO mice. Although T1R3KO mice did not present a metabolically disrupted phenotype, bioinformatic interpretation of the high-dimensionality data indicated a strong neurodegenerative signature associated with significant alterations in pathways involved in neuritogenesis, dendritic growth, and synaptogenesis. Furthermore, a significantly reduced dendritic spine density was observed in T1R3KO mice together with alterations in learning and memory functions as well as sociability deficits. Taken together our data suggest that the sweet-taste receptor system plays an important neurotrophic role in the extralingual central nervous tissue that underpins synaptic function, memory acquisition, and social behavior.


Asunto(s)
Conducta Animal , Espinas Dendríticas/metabolismo , Aprendizaje , Memoria , Neuritas/metabolismo , Receptores Acoplados a Proteínas G/deficiencia , Conducta Social , Animales , Espinas Dendríticas/patología , Ratones , Ratones Noqueados , Neuritas/patología
5.
Nucleic Acids Res ; 43(2): 943-59, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25552414

RESUMEN

We explore the role of DNA damage processing in the progression of cognitive decline by creating a new mouse model. The new model is a cross of a common Alzheimer's disease (AD) mouse (3xTgAD), with a mouse that is heterozygous for the critical DNA base excision repair enzyme, DNA polymerase ß. A reduction of this enzyme causes neurodegeneration and aggravates the AD features of the 3xTgAD mouse, inducing neuronal dysfunction, cell death and impairing memory and synaptic plasticity. Transcriptional profiling revealed remarkable similarities in gene expression alterations in brain tissue of human AD patients and 3xTg/Polß(+/-) mice including abnormalities suggestive of impaired cellular bioenergetics. Our findings demonstrate that a modest decrement in base excision repair capacity can render the brain more vulnerable to AD-related molecular and cellular alterations.


Asunto(s)
Enfermedad de Alzheimer/patología , ADN Polimerasa beta/genética , Reparación del ADN , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Apoptosis , Autofagia , Modelos Animales de Enfermedad , Metabolismo Energético , Femenino , Heterocigoto , Hipocampo/patología , Humanos , Ratones , Ratones Transgénicos , Fenotipo , Transcriptoma
6.
Artículo en Inglés | MEDLINE | ID: mdl-26834700

RESUMEN

Aging represents one of the most complicated and highly integrated somatic processes. Healthy aging is suggested to rely upon the coherent regulation of hormonal and neuronal communication between the central nervous system and peripheral tissues. The hypothalamus is one of the main structures in the body responsible for sustaining an efficient interaction between energy balance and neurological activity and therefore likely coordinates multiple systems in the aging process. We previously identified, in hypothalamic and peripheral tissues, the G protein-coupled receptor kinase interacting protein 2 (GIT2) as a stress response and aging regulator. As metabolic status profoundly affects aging trajectories, we investigated the role of GIT2 in regulating metabolic activity. We found that genomic deletion of GIT2 alters hypothalamic transcriptomic signatures related to diabetes and metabolic pathways. Deletion of GIT2 reduced whole animal respiratory exchange ratios away from those related to primary glucose usage for energy homeostasis. GIT2 knockout (GIT2KO) mice demonstrated lower insulin secretion levels, disruption of pancreatic islet beta cell mass, elevated plasma glucose, and insulin resistance. High-dimensionality transcriptomic signatures from islets isolated from GIT2KO mice indicated a disruption of beta cell development. Additionally, GIT2 expression was prematurely elevated in pancreatic and hypothalamic tissues from diabetic-state mice (db/db), compared to age-matched wild type (WT) controls, further supporting the role of GIT2 in metabolic regulation and aging. We also found that the physical interaction of pancreatic GIT2 with the insulin receptor and insulin receptor substrate 2 was diminished in db/db mice compared to WT mice. Therefore, GIT2 appears to exert a multidimensional "keystone" role in regulating the aging process by coordinating somatic responses to energy deficits.

7.
Cancer Med ; 4(2): 245-52, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25354792

RESUMEN

Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cß2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds.


Asunto(s)
Anilidas/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Piridinas/efectos adversos , Papilas Gustativas/efectos de los fármacos , Gusto/efectos de los fármacos , Anilidas/administración & dosificación , Animales , Peso Corporal/efectos de los fármacos , Recuento de Células , Tamaño de la Célula/efectos de los fármacos , Proteínas Hedgehog/antagonistas & inhibidores , Factores de Transcripción de Tipo Kruppel , Ratones , Ratones Endogámicos C57BL , Piridinas/administración & dosificación , Transducción de Señal/efectos de los fármacos , Papilas Gustativas/fisiología , Proteína con Dedos de Zinc GLI1
8.
J Biol Chem ; 290(5): 2728-43, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25505248

RESUMEN

Huntington disease (HD) is a neurodegenerative disorder characterized by progressive motor impairment and cognitive alterations. Hereditary HD is primarily caused by the expansion of a CAG trinucleotide repeat in the huntingtin (Htt) gene, which results in the production of mutant huntingtin protein (mHTT) with an expanded amino-terminal polyglutamine (poly(Q)) stretch. Besides pathological mHTT aggregation, reduced brain-derived neurotrophic factor (BDNF) levels, impaired neurotrophin signaling, and compromised mitochondrial functions also contribute to the deleterious progressive etiology of HD. As a well tolerated Food and Drug Administration-approved antidepressant, amitriptyline (AMI) has shown efficacy in treating neurodegenerative murine models via potentiation of BDNF levels and amelioration of alterations in neurotrophin signaling pathways. In this study, we observed profound improvements in the motor coordination of AMI-treated N171-82Q HD model mice. The beneficial effects of AMI treatment were associated with its ability to reduce mHTT aggregation, potentiation of the BDNF-TrkB signaling system, and support of mitochondrial integrity and functionality. Our study not only provides preclinical evidence for the therapeutic potency of AMI in treating HD, but it also represents an important example of the usefulness of additional pharmacogenomic profiling of pre-existing drugs for novel therapeutic effects with often intractable pathological scenarios.


Asunto(s)
Amitriptilina/uso terapéutico , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/fisiopatología , Mitocondrias/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo , Biología Computacional , Modelos Animales de Enfermedad , Femenino , Enfermedad de Huntington/metabolismo , Masculino , Ratones , Mitocondrias/efectos de los fármacos
9.
Front Physiol ; 5: 231, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25002850

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disorder typified by involuntary body movements, and psychiatric and cognitive abnormalities. Many HD patients also exhibit metabolic changes including progressive weight loss and appetite dysfunction. Here we have investigated metabolic function in pre-manifest and manifest HD subjects to establish an HD subject metabolic hormonal plasma signature. Individuals at risk for HD who have had predictive genetic testing showing the cytosine-adenine-guanine (CAG) expansion causative of HD, but who do not yet present signs and symptoms sufficient for the diagnosis of manifest HD are said to be "pre-manifest." Pre-manifest and manifest HD patients, as well as both familial and non-familial controls, were evaluated for multiple peripheral metabolism signals including circulating levels of hormones, growth factors, lipids, and cytokines. Both pre-manifest and manifest HD subjects exhibited significantly reduced levels of circulating growth factors, including growth hormone and prolactin. HD-related changes in the levels of metabolic hormones such as ghrelin, glucagon, and amylin were also observed. Total cholesterol, HDL-C, and LDL-C were significantly decreased in HD subjects. C-reactive protein was significantly elevated in pre-manifest HD subjects. The observation of metabolic alterations, even in subjects considered to be in the pre-manifest stage of HD, suggests that in addition, and prior, to overt neuronal damage, HD affects metabolic hormone secretion and energy regulation, which may shed light on pathogenesis, and provide opportunities for biomarker development.

10.
J Gerontol A Biol Sci Med Sci ; 69(5): 532-44, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24077597

RESUMEN

Calorie restriction (CR) is a lifestyle intervention employed to reduce body weight and improve metabolic functions primarily via reduction of ingested carbohydrates and fats. Taste perception is highly related to functional metabolic status and body adiposity. We have previously shown that sweet taste perception diminishes with age; however, relatively little is known about the effects of various lengths of CR upon taste cell morphology and function. We investigated the effects of CR on taste bud morphology and expression of sweet taste-related modulators in 5-, 17-, and 30-month-old rats. In ad libitum (AL) and CR rats, we consistently found the following parameters altered significantly with advancing age: reduction of taste bud size and taste cell numbers per taste bud and reduced expression of sonic hedgehog, type 1 taste receptor 3 (T1r3), α-gustducin, and glucagon-like peptide-1 (GLP-1). In the oldest rats, CR affected a significant reduction of tongue T1r3, GLP-1, and α-gustducin expression compared with age-matched AL rats. Leptin receptor immunopositive cells were elevated in 17- and 30-month-old CR rats compared with age-matched AL rats. These alterations of sweet taste-related modulators, specifically during advanced aging, suggest that sweet taste perception may be altered in response to different lengths of CR.


Asunto(s)
Envejecimiento/fisiología , Restricción Calórica , Papilas Gustativas/patología , Papilas Gustativas/fisiopatología , Gusto/fisiología , Animales , Péptido 1 Similar al Glucagón/metabolismo , Proteínas Hedgehog/metabolismo , Masculino , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Transducina/metabolismo
11.
Neurobiol Aging ; 35(5): 1153-61, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24239384

RESUMEN

Parkinson's disease (PD) patients frequently display loss of body fat mass and increased energy expenditure, and several studies have outlined a relationship between these metabolic abnormalities and disease severity, yet energy metabolism is largely unstudied in mouse models of PD. Here we characterize metabolic and physiologic responses to a high calorie diet (HCD) in mice expressing in neurons a mutant form of human α-synuclein (A53T) that causes dominantly inherited familial forms of the disease. A53T (SNCA) and wild type (WT) littermate mice were placed on a HCD for 12 weeks and evaluated for weight gain, food intake, body fat, blood plasma leptin, hunger, glucose tolerance, and energy expenditure. Results were compared with both SNCA and WT mice on a control diet. Despite consuming similar amounts of food, WT mice gained up to 66% of their original body weight on a HCD, whereas SNCA mice gained only 17%. Further, after 12 weeks on a HCD, magnetic resonance imaging analysis revealed that WT mice had significantly greater total and visceral body fat compared with SNCA mice (p < 0.007). At the age of 24 weeks SNCA mice displayed significantly increased hunger compared with WT (p < 0.03). At the age of 36 weeks, SNCA mice displayed significant hypoleptinemia compared with WT, both on a normal diet and a HCD (p < 0.03). The HCD induced insulin insensitivity in WT, but not SNCA mice, as indicated by an oral glucose tolerance test. Finally, SNCA mice displayed greater energy expenditure compared with WT, as measured in a Comprehensive Laboratory Animal Monitoring System, after 12 weeks on a HCD. Thus, SNCA mice are resistant to HCD-induced obesity and insulin resistance and display reduced body fat, increased hunger, hypoleptinemia and increased energy expenditure. Our findings reveal a profile of metabolic dysfunction in a mouse model of PD that is similar to that of human PD patients, thus providing evidence that α-synuclein pathology is sufficient to drive such metabolic abnormalities and providing an animal model for discovery of the underlying mechanisms and potential therapeutic interventions.


Asunto(s)
Metabolismo Energético , Leptina/sangre , Leptina/deficiencia , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , Tejido Adiposo/metabolismo , Animales , Modelos Animales de Enfermedad , Ingestión de Energía , Resistencia a la Insulina , Masculino , Ratones
12.
Brain Behav Immun ; 36: 90-100, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24145051

RESUMEN

Toll-like receptors (TLR) are innate immune receptors typically activated by microbial-associated molecular patterns (MAMPs) during infection or damage-associated molecular patterns (DAMPs) as a result of tissue injury. Recent findings suggest that TLR2 and TLR4 signaling play important roles in developmental and adult neuroplasticity, and in learning and memory. In addition, activation of TLR2 and TLR4 worsens ischemic injury to the heart and brain in animal models of myocardial infarction and stroke. TLR activation is also implicated in thermoregulation and fever in response to infection. However, it is not known whether TLRs participate in the regulation of the sympathetic and/or parasympathetic components of the autonomic nervous system (ANS). Here we provide evidence that TLR2 and TLR4 influence autonomic regulation of heart rate (HR) body temperature and energy metabolism in mice. We show that mice lacking TLR2 or TLR4 exhibit reduced basal HR, which results from an increase of parasympathetic tone. In addition, thermoregulatory responses to stress are altered in TLR2-/- and TLR4-/- mice, and brown fat-dependent thermoregulation is altered in TLR4-/- mice. Moreover, TLR2-/- and TLR4-/- mice consume less food and exhibit a greater mass compared to wild type mice. Collectively, our findings suggest important roles for TLR2 and TLR4 in the ANS regulation of cardiovascular function, thermoregulation, and energy metabolism.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Animales , Temperatura Corporal , Regulación de la Temperatura Corporal/fisiología , Metabolismo Energético/fisiología , Frecuencia Cardíaca/fisiología , Masculino , Ratones , Ratones Noqueados , Restricción Física , Estrés Psicológico/metabolismo
13.
PLoS One ; 8(10): e76553, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24124572

RESUMEN

Taste perception plays an important role in regulating food preference, eating behavior and energy homeostasis. Taste perception is modulated by a variety of factors, including gastric hormones such as ghrelin. Ghrelin can regulate growth hormone release, food intake, adiposity, and energy metabolism. Octanoylation of ghrelin by ghrelin O-acyltransferase (GOAT) is a specific post-translational modification which is essential for many biological activities of ghrelin. Ghrelin and GOAT are both widely expressed in many organs including the gustatory system. In the current study, overall metabolic profiles were assessed in wild-type (WT), ghrelin knockout (ghrelin(-/-)), and GOAT knockout (GOAT(-/-)) mice. Ghrelin(-/-) mice exhibited decreased food intake, increased plasma triglycerides and increased ketone bodies compared to WT mice while demonstrating WT-like body weight, fat composition and glucose control. In contrast GOAT(-/-) mice exhibited reduced body weight, adiposity, resting glucose and insulin levels compared to WT mice. Brief access taste behavioral tests were performed to determine taste responsivity in WT, ghrelin(-/-) and GOAT(-/-) mice. Ghrelin and GOAT null mice possessed reduced lipid taste responsivity. Furthermore, we found that salty taste responsivity was attenuated in ghrelin(-/-) mice, yet potentiated in GOAT(-/-) mice compared to WT mice. Expression of the potential lipid taste regulators Cd36 and Gpr120 were reduced in the taste buds of ghrelin and GOAT null mice, while the salt-sensitive ENaC subunit was increased in GOAT(-/-) mice compared with WT mice. The altered expression of Cd36, Gpr120 and ENaC may be responsible for the altered lipid and salt taste perception in ghrelin(-/-) and GOAT(-/-) mice. The data presented in the current study potentially implicates ghrelin signaling activity in the modulation of both lipid and salt taste modalities.


Asunto(s)
Aciltransferasas/genética , Ghrelina/genética , Lípidos , Sales (Química) , Percepción del Gusto/genética , Aciltransferasas/deficiencia , Animales , Composición Corporal , Conducta Alimentaria , Regulación de la Expresión Génica , Ghrelina/deficiencia , Hormonas/metabolismo , Cuerpos Cetónicos/sangre , Masculino , Proteínas de la Membrana , Ratones , Ratones Noqueados , Fenotipo , Papilas Gustativas/anatomía & histología , Papilas Gustativas/metabolismo , Triglicéridos/sangre
14.
J Parkinsons Dis ; 3(2): 215-29, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23938351

RESUMEN

BACKGROUND: Mutations in the human α-synuclein gene lead to early-onset Parkinson's disease (PD); however, phenotypes of α-synuclein mutant mice vary depending upon the promoter driving transgene expression. OBJECTIVE: The goal of this study was to characterize behavior and neurochemical alterations in mice expressing mutant (A53T) human α-synuclein, controlled by a neuron-specific Thy-1 promoter. Our data provide important additional phenotypic and biochemical characterization of a previously generated model of PD. METHODS: A53T (SNCA) and wild type (WT) littermate mice were evaluated for motor function (rotarod and stride length) and anxiety (elevated plus maze and open field) every 2 weeks. At 24 weeks mice were evaluated in a Comprehensive Lab Animal Monitoring System (CLAMS). A separate cohort of mice were euthanized at 12, 24 and 36 weeks for immunoblot analysis of α-synuclein, dopamine transporter (DAT) and tyrosine hydroxylase (TH) in the striatum, and hypothalamic serotonin and metabolites were measured. RESULTS: SNCA mice display significant motor deficits at 14-18 weeks of age compared to WT mice, which progress over time. CLAMS analysis revealed an increase in activity during the dark phase and a reduction in overall estimated sleep time for SNCA mice compared to WT consistent with clinical reports of sleep abnormalities in PD. A transient change in the levels of DAT appeared at 12 weeks in the striatum and serotonin levels were also altered in the hypothalamus at this time point. CONCLUSIONS: This PD model displays consistent and clinically relevant motor and sleep phenotypes. Anxiety phenotypes are consistent with other α-synuclein based PD models yet incongruous with typical clinical symptoms. Early increases in serotonin levels potentially explain reductions in anxiety behaviors and sleep.


Asunto(s)
Ansiedad/etiología , Encéfalo/patología , Regulación de la Expresión Génica , Proteínas de Filamentos Intermediarios/genética , Mutación/genética , Enfermedad de Parkinson , Trastornos del Sueño-Vigilia/etiología , Factores de Edad , Animales , Ansiedad/diagnóstico , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Conducta Exploratoria/fisiología , Humanos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Desempeño Psicomotor/fisiología , Tirosina 3-Monooxigenasa/metabolismo
15.
PLoS One ; 8(8): e70257, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23950916

RESUMEN

With the prevalence of obesity, artificial, non-nutritive sweeteners have been widely used as dietary supplements that provide sweet taste without excessive caloric load. In order to better understand the overall actions of artificial sweeteners, especially when they are chronically used, we investigated the peripheral and central nervous system effects of protracted exposure to a widely used artificial sweetener, acesulfame K (ACK). We found that extended ACK exposure (40 weeks) in normal C57BL/6J mice demonstrated a moderate and limited influence on metabolic homeostasis, including altering fasting insulin and leptin levels, pancreatic islet size and lipid levels, without affecting insulin sensitivity and bodyweight. Interestingly, impaired cognitive memory functions (evaluated by Morris Water Maze and Novel Objective Preference tests) were found in ACK-treated C57BL/6J mice, while no differences in motor function and anxiety levels were detected. The generation of an ACK-induced neurological phenotype was associated with metabolic dysregulation (glycolysis inhibition and functional ATP depletion) and neurosynaptic abnormalities (dysregulation of TrkB-mediated BDNF and Akt/Erk-mediated cell growth/survival pathway) in hippocampal neurons. Our data suggest that chronic use of ACK could affect cognitive functions, potentially via altering neuro-metabolic functions in male C57BL/6J mice.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Hipocampo/efectos de los fármacos , Edulcorantes/farmacología , Tiazinas/farmacología , Animales , Western Blotting , Línea Celular Tumoral , Cognición/efectos de los fármacos , Metabolismo Energético/fisiología , Hipocampo/metabolismo , Hipocampo/fisiología , Humanos , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/crecimiento & desarrollo , Leptina/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Receptor trkB/metabolismo , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
16.
Artículo en Inglés | MEDLINE | ID: mdl-23577003

RESUMEN

Bioluminescence resonance energy transfer (BRET) is an improved version of earlier resonance energy transfer technologies used for the analysis of biomolecular protein interaction. BRET analysis can be applied to many transmembrane receptor classes, however the majority of the early published literature on BRET has focused on G protein-coupled receptor (GPCR) research. In contrast, there is limited scientific literature using BRET to investigate receptor tyrosine kinase (RTK) activity. This limited investigation is surprising as RTKs often employ dimerization as a key factor in their activation, as well as being important therapeutic targets in medicine, especially in the cases of cancer, diabetes, neurodegenerative, and respiratory conditions. In this review, we consider an array of studies pertinent to RTKs and other non-GPCR receptor protein-protein signaling interactions; more specifically we discuss receptor-protein interactions involved in the transmission of signaling communication. We have provided an overview of functional BRET studies associated with the RTK superfamily involving: neurotrophic receptors [e.g., tropomyosin-related kinase (Trk) and p75 neurotrophin receptor (p75NTR)]; insulinotropic receptors [e.g., insulin receptor (IR) and insulin-like growth factor receptor (IGFR)] and growth factor receptors [e.g., ErbB receptors including the EGFR, the fibroblast growth factor receptor (FGFR), the vascular endothelial growth factor receptor (VEGFR) and the c-kit and platelet-derived growth factor receptor (PDGFR)]. In addition, we review BRET-mediated studies of other tyrosine kinase-associated receptors including cytokine receptors, i.e., leptin receptor (OB-R) and the growth hormone receptor (GHR). It is clear even from the relatively sparse experimental RTK BRET evidence that there is tremendous potential for this technological application for the functional investigation of RTK biology.

17.
PLoS One ; 7(10): e47240, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23094041

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder, which is characterized by progressive motor impairment and cognitive alterations. Changes in energy metabolism, neuroendocrine function, body weight, euglycemia, appetite function, and circadian rhythm can also occur. It is likely that the locus of these alterations is the hypothalamus. We used the HD transgenic (tg) rat model bearing 51 CAG repeats, which exhibits similar HD symptomology as HD patients to investigate hypothalamic function. We conducted detailed hypothalamic proteome analyses and also measured circulating levels of various metabolic hormones and lipids in pre-symptomatic and symptomatic animals. Our results demonstrate that there are significant alterations in HD rat hypothalamic protein expression such as glial fibrillary acidic protein (GFAP), heat shock protein-70, the oxidative damage protein glutathione peroxidase (Gpx4), glycogen synthase1 (Gys1) and the lipid synthesis enzyme acylglycerol-3-phosphate O-acyltransferase 1 (Agpat1). In addition, there are significant alterations in various circulating metabolic hormones and lipids in pre-symptomatic animals including, insulin, leptin, triglycerides and HDL, before any motor or cognitive alterations are apparent. These early metabolic and lipid alterations are likely prodromal signs of hypothalamic dysfunction. Gaining a greater understanding of the hypothalamic and metabolic alterations that occur in HD, could lead to the development of novel therapeutics for early interventional treatment of HD.


Asunto(s)
Expresión Génica , Enfermedad de Huntington/genética , Hipotálamo/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Hipotálamo/patología , Insulina/sangre , Leptina/sangre , Lipoproteínas HDL/sangre , Masculino , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Ratas , Ratas Transgénicas , Triglicéridos/sangre
18.
J Biol Chem ; 287(38): 31766-82, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22822065

RESUMEN

Our aim was to employ novel analytical methods to investigate the therapeutic treatment of the energy regulation dysfunction occurring in a Huntington disease (HD) mouse model. HD is a neurodegenerative disorder that is characterized by progressive motor impairment and cognitive alterations. Changes in neuroendocrine function, body weight, energy metabolism, euglycemia, appetite function, and gut function can also occur. It is likely that the locus of these alterations is the hypothalamus. We determined the effects of three different euglycemic agents on HD progression using standard physiological and transcriptomic signature analyses. N171-82Q HD mice were treated with insulin, Exendin-4, and the newly developed GLP-1-Tf to determine whether these agents could improve energy regulation and delay disease progression. Blood glucose, insulin, metabolic hormone levels, and pancreatic morphology were assessed. Hypothalamic gene transcription, motor coordination, and life span were also determined. The N171-82Q mice exhibited significant alterations in hypothalamic gene transcription signatures and energy metabolism that were ameliorated, to varying degrees, by the different euglycemic agents. Exendin-4 or GLP-1-Tf (but not insulin) treatment also improved pancreatic morphology, motor coordination, and increased life span. Using hypothalamic transcription signature analyses, we found that the physiological efficacy variation of the drugs was evident in the degree of reversal of the hypothalamic HD pathological signature. Euglycemic agents targeting hypothalamic and energy regulation dysfunction in HD could potentially alter disease progression and improve quality of life in HD.


Asunto(s)
Glucemia/metabolismo , Enfermedad de Huntington/genética , Hipotálamo/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Transcripción Genética , Animales , Diabetes Mellitus/metabolismo , Diseño de Fármacos , Exenatida , Péptido 1 Similar al Glucagón/metabolismo , Enfermedad de Huntington/sangre , Insulina/metabolismo , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Modelos Neurológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Páncreas/metabolismo , Péptidos/metabolismo , Ponzoñas/metabolismo
19.
Curr Alzheimer Res ; 9(1): 5-17, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22329649

RESUMEN

Alzheimer's disease and other related neurodegenerative diseases are highly debilitating disorders that affect millions of people worldwide. Efforts towards developing effective treatments for these disorders have shown limited efficacy at best, with no true cure to this day being present. Recent work, both clinical and experimental, indicates that many neurodegenerative disorders often display a coexisting metabolic dysfunction which may exacerbate neurological symptoms. It stands to reason therefore that metabolic pathways may themselves contain promising therapeutic targets for major neurodegenerative diseases. In this review, we provide an overview of some of the most recent evidence for metabolic dysregulation in Alzheimer's disease, Huntington's disease, and Parkinson's disease, and discuss several potential mechanisms that may underlie the potential relationships between metabolic dysfunction and etiology of nervous system degeneration. We also highlight some prominent signaling pathways involved in the link between peripheral metabolism and the central nervous system that are potential targets for future therapies, and we will review some of the clinical progress in this field. It is likely that in the near future, therapeutics with combinatorial neuroprotective and 'eumetabolic' activities may possess superior efficacies compared to less pluripotent remedies.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Enfermedades Metabólicas/etiología , Enfermedades Neurodegenerativas/complicaciones , Enfermedades Neurodegenerativas/metabolismo , Adiponectina/metabolismo , Peso Corporal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ghrelina/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Humanos , Leptina/metabolismo
20.
Neurobiol Aging ; 33(4): 830.e1-12, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21855175

RESUMEN

Chronic stress may be a risk factor for developing Alzheimer's disease (AD), but most studies of the effects of stress in models of AD utilize acute adverse stressors of questionable clinical relevance. The goal of this work was to determine how chronic psychosocial stress affects behavioral and pathological outcomes in an animal model of AD, and to elucidate underlying mechanisms. A triple-transgenic mouse model of AD (3xTgAD mice) and nontransgenic control mice were used to test for an affect of chronic mild social stress on blood glucose, plasma glucocorticoids, plasma insulin, anxiety, and hippocampal amyloid ß-particle (Aß), phosphorylated tau (ptau), and brain-derived neurotrophic factor (BDNF) levels. Despite the fact that both control and 3xTgAD mice experienced rises in corticosterone during episodes of mild social stress, at the end of the 6-week stress period 3xTgAD mice displayed increased anxiety, elevated levels of Aß oligomers and intraneuronal Aß, and decreased brain-derived neurotrophic factor levels, whereas control mice did not. Findings suggest 3xTgAD mice are more vulnerable than control mice to chronic psychosocial stress, and that such chronic stress exacerbates Aß accumulation and impairs neurotrophic signaling.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides/metabolismo , Ansiedad/etiología , Conducta Animal/fisiología , Conducta Social , Estrés Psicológico/fisiopatología , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Análisis de Varianza , Animales , Glucemia/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ayuno , Glucocorticoides/sangre , Hipocampo/patología , Humanos , Insulina/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Presenilina-1/genética , Factores de Tiempo , Proteínas tau/genética , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA