Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(24): 28679-28688, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34101423

RESUMEN

Quantum dots (QDs) have a wide range of applications in the field of optoelectronics. They have been playing multiple roles within the configuration of a device, by serving as the building blocks for both the active layer and the carrier transport layer. While the performance of various optoelectronic devices has been steadily improving via developments in passivating the QD active layer, the possible improvement via passivation of the QD-based carrier transport layer has been largely overlooked. Here, with lead sulfide QD photovoltaics as the platform of study, we demonstrate that the device performance can be significantly improved by passivating the QD hole transport layer (HTL) with zinc salt post-treatments. The power conversion efficiency is improved from 8.7% of the reference device to 10.2% and 9.5% for devices with zinc acetate (ZnAc)- and zinc iodide (ZnI2)-treated HTLs, respectively. Transient absorption spectroscopy confirms that both treatments effectively reduce band-tail states and increase carrier lifetime of the HTLs. Further elemental analysis shows that ZnAc provides a higher amount of Zn2+ for passivation while maintaining the function of HTL by allowing essential p-doping oxidation. In contrast, the additional I- passivation from ZnI2 inhibits p-doping oxidation and limits the function of HTL. This work demonstrates the potential of improving device performance by passivating the QD-based HTLs, and the method developed is likely applicable to other optoelectronic devices.

2.
Nano Lett ; 18(4): 2304-2310, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29502425

RESUMEN

Semiconductor nanowire lasers can produce guided coherent light emission with miniaturized geometry, bringing about new possibilities for a variety of applications including nanophotonic circuits, optical sensing, and on-chip and chip-to-chip optical communications. Here, we report on the realization of single-mode and room-temperature lasing from 890 to 990 nm, utilizing a novel design of single nanowires with GaAsSb-based multiple axial superlattices as a gain medium under optical pumping. The control of lasing wavelength via compositional tuning with excellent room-temperature lasing performance is shown to result from the unique nanowire structure with efficient gain material, which delivers a low lasing threshold of ∼6 kW/cm2 (75 µJ/cm2 per pulse), a lasing quality factor as high as 1250, and a high characteristic temperature of ∼129 K. These results present a major advancement for the design and synthesis of nanowire laser structures, which can pave the way toward future nanoscale integrated optoelectronic systems with superior performance.

3.
Adv Mater ; 29(41)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28922475

RESUMEN

Colloidal quantum dots (QDs) are promising candidate materials for photovoltaics (PV) owing to the tunable bandgap and low-cost solution processability. Lead selenide (PbSe) QDs are particularly attractive to PV applications due to the efficient multiple-exciton generation and carrier transportation. However, surface defects arising from the oxidation of the PbSe QDs have been the major limitation for their development in PV. Here, a new passivation method for chlorinated PbSe QDs via ion exchange with cesium lead halide (Br, I) perovskite nanocrystals is reported. The surface chloride ions on the as-synthesized QDs can be partially exchanged with bromide or iodide ions from the perovskite nanocrystals, hence forming a hybrid halide passivation. Consistent with the improved photoluminescence quantum yield, the champion PV device fabricated with these PbSe QDs achieves a PCE of 8.2%, compared to 7.3% of that fabricated with the untreated QDs. This new method also leads to devices with excellent air-stability, retaining at least 93% of their initial PCEs after being stored in ambient conditions for 57 d. This is considered as the first reported PbSe QD solar cell with a PCE of over 8% to date.

4.
Opt Lett ; 36(20): 3990-2, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22002362

RESUMEN

We present an approach to realizing enhanced upconversion efficiency in erbium (Er)-doped photonic crystals. Slow-light-mode pumping of the first Er excited state transition can result in enhanced emission from higher-energy levels that may lead to finite subbandgap external quantum efficiency in crystalline silicon solar cells. Using a straightforward electromagnetic model, we calculate potential field enhancements of more than 18× within he slow-light mode of a one-dimensional photonic crystal and discuss design trade-offs and considerations for photovoltaics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA