Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446742

RESUMEN

With sensitivity being the Achilles' heel of nuclear magnetic resonance (NMR), the superior mass sensitivity offered by micro-coils can be an excellent choice for tiny, mass limited samples such as eggs and small organisms. Recently, complementary metal oxide semiconductor (CMOS)-based micro-coil transceivers have been reported and demonstrate excellent mass sensitivity. However, the ability of broadband CMOS micro-coils to study heteronuclei has yet to be investigated, and here their potential is explored within the lens of environmental research. Eleven nuclei including 7Li, 19F, 31P and, 205Tl were studied and detection limits in the low to mid picomole range were found for an extended experiment. Further, two environmentally relevant samples (a sprouting broccoli seed and a D. magna egg) were successfully studied using the CMOS micro-coil system. 13C NMR was used to help resolve broad signals in the 1H spectrum of the 13C enriched broccoli seed, and steady state free precession was used to improve the signal-to-noise ratio by a factor of six. 19F NMR was used to track fluorinated contaminants in a single D. magna egg, showing potential for studying egg-pollutant interactions. Overall, CMOS micro-coil NMR demonstrates significant promise in environmental research, especially when the future potential to scale to multiple coil arrays (greatly improving throughput) is considered.


Asunto(s)
Contaminantes Ambientales , Flúor , Espectroscopía de Resonancia Magnética , Óxidos , Semiconductores , Espectroscopía de Resonancia Magnética/métodos , Brassica/química , Semillas/química , Daphnia magna , Animales , Contaminantes Ambientales/análisis
2.
J Magn Reson ; 335: 107142, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34999310

RESUMEN

The resolving power, chemical sensitivity and non-invasive nature of NMR have made it an established technique for in vivo studies of large organisms both for research and clinical applications. NMR would clearly be beneficial for analysis of entities at the microscopic scale of about 1 nL (the nanoliter scale), typical of early development of mammalian embryos, microtissues and organoids: the scale where the building blocks of complex organisms could be observed. However, the handling of such small samples (about 100 µm) and sensitivity issues have prevented a widespread adoption of NMR. In this article we show how these limitations can be overcome to obtain NMR spectra of a mammalian embryo in its early stage. To achieve this we employ ultra-compact micro-chip technologies in combination with 3D-printed micro-structures. Such device is packaged for use as plug & play sensor and it shows sufficient sensitivity to resolve NMR signals from individual bovine pre-implantation embryos. The embryos in this study are obtained through In Vitro Fertilization (IVF) techniques, transported cryopreserved to the NMR laboratory, and measured shortly after thawing. In less than 1 h these spherical samples of just 130-190 µm produce distinct spectral peaks, largely originating from lipids contained inside them. We further observe how the spectra vary from one sample to another despite their optical and morphological similarities, suggesting that the method can further develop into a non-invasive embryo assay for selection prior to embryo transfer.


Asunto(s)
Transferencia de Embrión , Embrión de Mamíferos , Animales , Bovinos , Transferencia de Embrión/métodos , Desarrollo Embrionario , Fertilización In Vitro , Espectroscopía de Resonancia Magnética/métodos , Mamíferos
3.
Sci Rep ; 10(1): 18306, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33110145

RESUMEN

Performing chemical analysis at the nanoliter (nL) scale is of paramount importance for medicine, drug development, toxicology, and research. Despite the numerous methodologies available, a tool for obtaining chemical information non-invasively is still missing at this scale. Observer effects, sample destruction and complex preparatory procedures remain a necessary compromise. Among non-invasive spectroscopic techniques, one able to provide holistic and highly resolved chemical information in-vivo is nuclear magnetic resonance (NMR). For its renowned informative power and ability to foster discoveries and life-saving applications, efficient NMR at microscopic scales is highly sought after, but so far technical limitations could not match the stringent necessities of microbiology, such as biocompatible handling, ease of use, and high throughput. Here we introduce a novel microsystem, which combines CMOS technology with 3D microfabrication, enabling nL NMR as a platform tool for non-invasive spectroscopy of organoids, 3D cell cultures, and early stage embryos. In this study we show its application to microlivers models simulating non-alcoholic fatty liver disease, demonstrating detection of lipid metabolism dynamics in a time frame of 14 days based on 117 measurements of single 3D human liver microtissues.

4.
Nat Commun ; 10(1): 2436, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31164639

RESUMEN

Thermosensitive microgels are widely studied hybrid systems combining properties of polymers and colloidal particles in a unique way. Due to their complex morphology, their interactions and packing, and consequentially the viscoelasticity of suspensions made from microgels, are still not fully understood, in particular under dense packing conditions. Here we study the frequency-dependent linear viscoelastic properties of dense suspensions of micron sized soft particles in conjunction with an analysis of the local particle structure and morphology based on superresolution microscopy. By identifying the dominating mechanisms that control the elastic and dissipative response, we can explain the rheology of these widely studied soft particle assemblies from the onset of elasticity deep into the overpacked regime. Interestingly, our results suggest that the friction between the microgels is reduced due to lubrification mediated by the polymer brush-like corona before the onset of interpenetration.

5.
Sci Adv ; 3(10): e1700969, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29062888

RESUMEN

Tuning the solubility of fuzzy polymer microgels by external triggers, such as temperature or pH, provides a unique mechanism for controlling the porosity and size of colloidal particles on the nanoscale. As a consequence, these smart microgel particles are being considered for applications ranging from viscosity modifiers and sensing to drug delivery and as models for the glass and the jamming transition. Despite their widespread use, little is known about how these soft particles adapt their shape and size under strong mechanical compression. We use a combination of precise labeling protocols and two-color superresolution microscopy to unravel the behavior of tracer microgels inside densely packed soft solids. We find that interpenetration and shape deformation are dominant until, in the highly overpacked state, this mechanism saturates and the only remaining way to further densify the system is by isotropic compression.

6.
Front Cell Neurosci ; 10: 142, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27303270

RESUMEN

Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labeled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation.

7.
Phys Rev Lett ; 112(14): 143901, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24765963

RESUMEN

Structural correlations in disordered media are known to affect significantly the propagation of waves. In this Letter, we theoretically investigate the transport and localization of light in 2D photonic structures with short-range correlated disorder. The problem is tackled semianalytically using the Baus-Colot model for the structure factor of correlated media and a modified independent scattering approximation. We find that short-range correlations make it possible to easily tune the transport mean free path by more than a factor of 2 and the related localization length over several orders of magnitude. This trend is confirmed by numerical finite-difference time-domain calculations. This study therefore shows that disorder engineering can offer fine control over light transport and localization in planar geometries, which may open new opportunities in both fundamental and applied photonics research.


Asunto(s)
Modelos Teóricos , Óptica y Fotónica/métodos , Anisotropía , Luz , Fotones , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...